Explanation:
It is known that wave intensity is the power to area ratio.
Mathematically, I = 
As it is given that power is 28.0 W and area is
.
Therefore, sound intensity will be calculated as follows.
I = 
= 
= 
or, = 
Thus, we can conclude that sound intensity at the position of the microphone is
.
Given
Car 1
m1 = 1300 kg
v1 = 20 m/s
m2 = 900 kg
v2 = -15 m/s
(Negative sign shows that direction of car 2 is opposite to car 1)
Procedure
As per the conservation of linear momentum, "The total momentum of the system before the collision must be equal to the total momentum after the collision". And this applies to the perfectly inelastic collision as well. Then the expression is,

Thus, we can conclude that the speed and direction of the cars after the impact is 5.68 m/s towards the first car.
Answer:NOOPE
Explanation:IM THE MYSTERY MAN WHOOOOSHHHHHHHHHHHHHHH ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Correct answer choice is :
C) The freezing and melting temperatures of a substance are the same.
Explanation:
Fluids have a particular temperature at which they convert into solids, identified as their freezing point. In theory, the melting point of a solid should be the same as the freezing point of the liquid. In practice, small variations among these measures can be seen. The freezing point of a matter is the same as that substance's melting point. At this distinct temperature, the substance can exist as either a solid or a liquid. At temperatures below the freezing/ melting point, the substance is a solid.
Answer:
tympanic membrane (eardrum)
Explanation:
The sound waves spread through the air and reach the outer ear, into which they penetrate through the ear canal. In doing so, they stimulate the eardrum, which closes the inner end of the duct. By vibrating this membrane, the vibration of a chain of ossicles located in the middle ear is induced. These ossicles transmit their vibration to the oval window, which is a membranous structure that communicates the middle ear with the cochlea of the inner ear. When the oval membrane moves, it moves the liquid (perilymph) that fills one of the three cavities of the cochlea generating waves in it. These waves mechanically stimulate the sensory cells (hair cells) located in the organ of Corti, within the cochlea in the central cavity, the middle ramp. This cavity is filled with a liquid rich in K +, endolymph. The cells embedded in the endolymph, change their permeability to K + due to the movement of the cilia and respond by releasing a neurotransmitter that excites the nerve terminals, which initiate the auditory sensory pathway.