Answer:
a
The total distance traveled is 
b
The average velocity is 
Explanation:
From the question we are told that
The time taken for first part 
The speed for the first part is 
The time taken for second part is 
The speed for the second part is 
The time taken for third part is
The speed for the third part is 
Generally

Therefore the total distance traveled is

substituting values


Generally the average velocity is mathematically represented as

Where
is the total time taken which is mathematically represented as


The average velocity is


The boiling point of water is 100°C. So at 101°C, the water is steam. Compute the specific heat first from 101 to 100.
E = mCΔT, where c for steam is 1.996 kJ/kg·°C
E₁ = (0.65 kg)(1.996 kJ/kg·°C)(101 - 100°C) = 1.2974 kJ
Next, let's solve the latent heat when steam turns to liquid. The heat of vaporization of water is 2260 kJ/kg.
E₂ = mHvap = (0.65 kg)(2260 kJ/kg) = 1469 kJ
Lastly, let's solve the energy to bring down the temperature to 51°C. The specific heat of liquid water is 4.187 kJ/kg·°C.
E₃ = (0.65 kg)(4.187 kJ/kg·°C)(100 - 51°C) = 139.36 kJ
Thus,
<em>Total energy = 1.2974 kJ+1469 kJ+139.36 kJ = 1,609.66 kJ</em>
The answer is in the picture.
Answer:
Acceleration of Sea Lion is 4.41 g
This is 49% of maximum jet acceleration given as a = 9g
Explanation:
As we know that the radius of the circular loop is given as
R = 0.37 m
The speed of the fish is given as

Now the centripetal acceleration of the sea lion is given as



as we know that

so we have

Now Percentage of this acceleration wrt maximum jet acceleration is given as

%
Answer:
Constant speed: yes
Constant velocity: no
Explanation:
Let's remind the definition of speed and velocity:
- Speed is a scalar quantity, which is equal to the ratio between the distance covered (regardless of the direction) and the time taken:

- Velocity is a vector quantity, so it has both a magnitude and a direction. The magnitude is equal to the rate between the displacement of the object and the time taken, while the direction is the same as the displacement.
In this problem, we notice that:
- The speed of the car remains constant, as it is 90 km/h
- However, its direction of motion changes while the car travels round the corner: this means that the direction of the velocity is also changing, therefore velocity is not constant.