Answer:
The mass of the cable is 4.94 kg
Explanation:
It is given that,
Mass of the block, m = 20 kg
Force applied to the cable, F = 110 N
Speed of the block, v = 4.2 m/s
Distance, d = 2 m
Let a is the acceleration of the block. It can be calculated using the third equation of motion as :



Let m' is the mass of the cable. It can be calculated using the second law of motion as :


m = 4.94 kg
So, the mass of the cable is 4.94 kg. Hence, this is the required solution.
Answer:
D. 12.4 m
Explanation:
Given that,
The initial velocity of the ball, u = 18 m/s
The angle at which the ball is projected, θ = 60°
The maximum height of the ball is given by the formula
h = u² sin²θ/2g m
Where,
g - acceleration due to gravity. (9.8 m/s)
Substituting the values in the above equation
h = 18² · sin²60 / 2 x 9.8
= 18² x 0.75 / 2 x 9.8
= 12.4 m
Hence, the maximum height of the ball attained, h = 12.4 m
Answer:
Density of jacket will be 
Explanation:
We know that weight of water displaced= buoyant force=weight of man
Now volume of water displaced 
Density of water 
So weight of water displaced 
So weight of jacket = 98-75 = 23 kg
We have given volume of the jacket = 
So density of jacket 
<span>What type of severe weather, direction the weather, any significant weather that may cause death or property destruction, and what areas will be affected by the severe weather is the information that is required for advance warnings of severe weather conditions. </span>