The amount of heat needed to increase the temperature of a substance by

is given by

where
m is the mass of the substance

is its specific heat capacity

is the increase of temperature
The sample of silver of our problem has a mass of

. Its specific heat capacity is

and the increase in temperature is

Therefore, the amount of heat needed is
"60 kg" is not a weight. It's a mass, and it's always the same
no matter where the object goes.
The weight of the object is
(mass) x (gravity in the place where the object is) .
On the surface of the Earth,
Weight = (60 kg) x (9.8 m/s²)
= 588 Newtons.
Now, the force of gravity varies as the inverse of the square of the distance from the center of the Earth.
On the surface, the distance from the center of the Earth is 1R.
So if you move out to 5R from the center, the gravity out there is
(1R/5R)² = (1/5)² = 1/25 = 0.04 of its value on the surface.
The object's weight would also be 0.04 of its weight on the surface.
(0.04) x (588 Newtons) = 23.52 Newtons.
Again, the object's mass is still 60 kg out there.
___________________________________________
If you have a textbook, or handout material, or a lesson DVD,
or a teacher, or an on-line unit, that says the object "weighs"
60 kilograms, then you should be raising a holy stink.
You are being planted with sloppy, inaccurate, misleading
information, and it's going to be YOUR problem to UN-learn it later.
They owe you better material.
Using the graph, which describes how Henry ran the 100m race;
a) It takes Henry 20seconds to run 100m
b) Henry's average speed over the race is; 5m/s.
According to the linear graph which describes the distance ran by Henry during the 100m race as a function of time.
a) Since the distance from start ran by Henry is plotted on the vertical axis, and the time is plotted on the horizontal axis;
To determine how long it took Henry to run 100m; The point corresponding to 100m is traced downward from the line of the graph and we find out that;
It takes Henry 20seconds to run 100m
b) Henry's average speed over the race is simply;
The slope of the distance-time graph.
Therefore,
- Average speed = (100-0)/(20-0)
Therefore, Henry's average speed over the race is; 5m/s.
Read more:
brainly.com/question/22125199
Answer:

Explanation:
It is given that,
Dimension of the rectangular roof, (6.17 m × 5.92 m)
The maximum net outward force, 
The density of air, 
The Bernoulli equation is used to find wind speed of this roof blow outward. It is given by :

Here,
(since air inside the roof is not moving)

Since, 



So, the wind speed of this roof blow outward is 29.13 m/s. Hence, this is the required solution.