Answer:
v₂ = 7/ (0.5)= 14 m/s
Explanation:
Flow rate of the fluid
Flow rate is the amount of fluid that circulates through a section of the pipeline (pipe, pipeline, river, canal, ...) per unit of time.
The formula for calculated the flow rate is:
Q= v*A Formula (1)
Where :
Q is the Flow rate (m³/s)
A is the cross sectional area of a section of the pipe (m²)
v is the speed of the fluid in that section (m/s)
Equation of continuity
The volume flow rate Q for an incompressible fluid at any point along a pipe is the same as the volume flow rate at any other point along a pipe:
Q₁= Q₂
Data
A₁ = 2m² : cross sectional area 1
v₁ = 3.5 m/s : fluid speed through A₁
A₂ = 0.5 m² : cross sectional area 2
Calculation of the fluid speed through A₂
We aply the equation of continuity:
Q₁= Q₂
We aply the equation of Formula (1):
v₁*A₁= v₂*A₂
We replace data
(3.5)*(2)= v₂*(0.5)
7 = v₂*(0.5)
v₂ = 7/ (0.5)
v₂ = 14 m/s
Answer:
Approximately
(assuming that the acceleration due to gravity is
.)
Explanation:
Assuming that
the weight on this 72-kg skydiver would be
(points downwards.)
Air resistance is supposed to act in the opposite direction of the motion. Since this skydiver is moving downwards, the air resistance on the skydiver would point upwards.
Therefore, the net force on this skydiver should be the difference between the weight and the air resistance on the skydiver:
.
Apply Newton's Second Law of motion to find the acceleration of this skydiver:
.
non examples of temperature are dixionanon , fairinheat, cabrowskin, and lastly ancomthere
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2