1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snezhnost [94]
2 years ago
7

4n² +7n=0 what do I do if there is no part c?

Mathematics
1 answer:
Gnoma [55]2 years ago
3 0

Answer:

  • Find the coefficients using ax^2 + bx + c = 0

a = 4

b = 7

c = 0

  • Make the coefficient equal 1. But how do we do that? Division.

4n² + 7n = 0

4/4n² + 7n/4 = 0/4

  • Simplify

= n² + 7/4n = 0

a = 1

b = 7/4

c = 0

  • Complete the square using b/2².

b = 7/4

(b/2)² = (7/4 ÷ 2)²

Use fraction rule.

7/4 ÷ 2² = 7/4² / 2²

<em>square the numbers</em>

7/4² / 2² = 49/16 ÷ 4

49/16 ÷ 4 = 49/16 × 1/4

49/16 × 1/4 = 49/64

Add to both sides of the equation using 49/64

b = 7/4

b/2 = 7/4 ÷ 2

<em>simplify</em>

b/2 = 7 ÷ (4 × 2)

<em>simplify(arithmetic)</em>

b/2 = 7/8

n² + 7/4n + 49/64 = 49/64

(n + 7/8)² = 49/64

  • Solve for the unknown x

(n+\frac{7}{8})^2=\frac{49}{64}\\\sqrt{(n+\frac{7}{8})^2}=\sqrt{\frac{49}{64}}\\

Next, cancel out the square on the left side.

n+\frac{7}{8}=+/-\sqrt{\frac{49}{64}}

Subtract 7/8 from both of the sides.

n+\frac{7}{8}-\frac{7}{8}=-\frac{7}{8}+/-\sqrt{\frac{49}{64}}

Simplify the left side.

n=-\frac{7}{8}+/-\sqrt{\frac{49}{64}}\\n=-\frac{7}{8}+/-\frac{\sqrt{49}}{\sqrt{64}}\\n=-\frac{7}{8}+/-\frac{7}{8}\\n_1=0\\n_2=-\frac{7}{4}

<em>That wraps it up for this equation. Hope it helped!</em>

You might be interested in
HELPPPPPPP!!!!!!!!!!!!!
Sonbull [250]
14.23 is your answer!!!!!!!
4 0
3 years ago
Read 2 more answers
...........................
Brrunno [24]

Answer:

.. .. .. .. .. .... . ..

Step-by-step explanation:

... .... .. .. ..

8 0
3 years ago
The midpoint of A (-4, 2) and B(8, 5) is
Norma-Jean [14]
\bf \textit{middle point of 2 points }\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;&({{ -4}}\quad ,&{{ 2}})\quad &#10;%  (c,d)&#10;&({{ 8}}\quad ,&{{ 5}})&#10;\end{array}\qquad&#10;%   coordinates of midpoint &#10;\left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)&#10;\\\\\\&#10;\left(\cfrac{{{ 8}} -4}{2}\quad ,\quad \cfrac{{{ 5}} + {{ 2}}}{2} \right)
8 0
3 years ago
Read 2 more answers
Type using number words. (Remember to use a hyphen in your answer where needed.) <br> 355
Stolb23 [73]
Three hundred- fifty- five

Reason; number words refer to the alphabetical form of numbers.
7 0
3 years ago
Number 36 please for geometry
Mumz [18]

Answer:

(x - 1)² + (y + 1/2)² = 65/4

Step-by-step explanation:

Given:  the endpoints of the diameter are (3, 3) and (-1, -4).  a( To determine the center of this circle, find the midpoint of the line segment connecting these two points:

      3 - 1

x = -----------

          2

and

         -1

y = ----------

          2

The center is at x = 1 and y = -1/2:  (1, -1/2).

b) The radius is half the diameter.  The diameter is the distance between the two endpoints given, that is, the distance between (-1, -4) and (3, 3):

diameter = √(4² + 7²) = √(16 + 49) = √65; therefore,

radius = (1/2)√65.

square of the radius = r² = 65/4

The general equation of a circle with center at (h, k) and radius r is

(x - h)² + (y - k)² = r².  In this case, the equation is:

(x - 1)² + (y + 1/2)² = 65/4

8 0
3 years ago
Other questions:
  • Generating Equivalent Expressions : simplify
    15·1 answer
  • How to mske a ten to find 17_8<br>​
    10·1 answer
  • Which expression is equivalent to "5-4"?<br> 5 + 4<br> 5 + -4<br> 4 - 5<br> 4 + -5
    14·2 answers
  • Combine the like terms to create an equivalent expression 5k+(-2k)-(-1)
    9·1 answer
  • I need to solve for x
    14·2 answers
  • Is 4/6 greater or less than 7/8
    13·1 answer
  • The fraction of 3 and 5 plus the fraction of 1 and 6
    8·2 answers
  • What does a square pluse be square
    5·2 answers
  • Please solve no links i will mark brailest
    14·1 answer
  • Help stuck on this question
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!