Answer:
C = 107.97 mol/L
Explanation:
Given data:
Volume of solution = 1.38 mL (1.38 mL× 1 L /1000 mL = 0.00138 L)
Mass of ammonium sulfite = 17.36 g
Concentration of solution =?
Solution:
We will calculate the number of moles of ammonium sulfite.
Number of moles = mass/molar mass
Number of moles = 17.36 g / 116.15 g/mol
Number of moles = 0.149 mol
Concentration:
C = n/V
C = concentration
n = number of moles of solute
v = volume in L
C = 0.149 mol / 0.00138 L
C = 107.97 mol/L
If you have a magnesium for every oxygen, then you have to start with two magnesiums. So the balanced equation is 2 Mg + O2 2 MgO.
And
CaCO3———→CaO + CO2
I hope it helped!
Find the number of moles
C = n / V
C(Concentration) = 0.30 moles / L
V ( Volume) = 2 L
n = ??
n = C * V
n = 0.30 mol / L * 2 L
n = 0.60 mol
Find the molar mass
2Na = 23 * 2 = 46 grams
1S = 32 * 1 = 32 grams
O4 = 16 * 4 = 64 grams
Total = 142 grams / mol
Find the mass
n = given mass / molar mass
n = 0.06 mol
molar Mass = 142 grams / mol
given mass = ???
given mass = molar mass * mols
given mass = 142 * 0.6
given mass = 85.2 grams.
85.2 are in a 2 L solution that has a concentration of 0.6 mol/L
Hello!
Data:
P (pressure) = 1 atm
V (volume) = 18.5 L
T (temperature) = 300 K
n (number of mols) = ? (in mol)
R (Gas constant) = 0.082 (atm*L/mol*K)
Apply the data to the Clapeyron equation (ideal gas equation), see:






Note:
If the feedback is to be considered, the closest r
esponse is 0.751 mol Nacl
_________________
_________________
I hope this helps. =)
<h3><u>Ⲁⲛ⳽ⲱⲉⲅ</u><u>:</u></h3>

<h3><u>Ⲋⲟⳑⳙⲧⳕⲟⲛ :</u></h3>
Molarity is used to measure the concentration of a solution , so it is also as molar concentration. It is denoted as M or Mol/L
<u>We </u><u>are </u><u>given </u><u>that </u><u>:</u>
- Weight of
= 5.34g - Volume of solution = 214 ml , or 0.214 L
The molar mass of magnesium chloride (
) is 95.21 g / mol
We can calculate the molarity of the solution by dividing the number of moles of solute by volume of solvent in liter ,i.e:
ㅤㅤㅤ⸻( 1 )
<em>Where,</em><em> </em>
- M = molarity
- n = number of moles
- V = Volume
We can calculate the number of moles by dividing the actual mass by its molar mass ,i.e:
ㅤㅤㅤ⸻ ( 2 )
<em>W</em><em>here,</em>
- n = number of moles
- m = molar mass
- w = actual mass
<u>Therefore</u><u>,</u>



<u>P</u><u>utting </u><u>the </u><u>values </u><u>in </u><u>equation </u><u>(</u><u> </u><u>1</u><u> </u><u>)</u><u>:</u>


