Answer : The number of iron atoms present in each red blood cell are, 
Explanation :
First we have to calculate the moles of iron.

Now we have to calculate the number of iron atoms.
As, 1 mole of iron contains
number of iron atoms
So, 0.0519 mole of iron contains
number of iron atoms
Now we have to calculate the number of iron atoms are present in each red blood cell.
Number of iron atoms are present in each red blood cell = 
Number of iron atoms are present in each red blood cell = 
Number of iron atoms are present in each red blood cell = 
Therefore, the number of iron atoms present in each red blood cell are, 
Decay constant of the process 1×10^(-12) day^(-1).
<h3>What is decay constant?</h3>
A radioactive nuclide's probability of decay per unit time is known as its decay constant, which is expressed in units of s1 or a1. As a result, as shown by the equation dP/P dt =, the number of parent nuclides P declines with time t. Nuclear forces are about 1,000,000 times more powerful than electrical and molecular forces in their ability to bind protons and neutrons. The strength of the bonds holding the radioactive element are likewise indifferent to the decay probabilities and's, in addition to being unaffected by temperature and pressure. The decay constant is related to the nuclide's T 1/2 half-life by T 1/2 = ln 2/.
To know more about decay constant:
brainly.com/question/16623902
#SPJ4
Answer:
Explanation:
Answer to Armando is an artist who sells prints of his original paintings. ... This problem has been solved! ... Armando wants to create a function P(x). to model his total profit where x is the number of paintings sold