The matrix that represents the matrix D is ![\left[\begin{array}{cccc}3&1&-9&8\\2&2&0&5\\16&1&-3&11\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%261%26-9%268%5C%5C2%262%260%265%5C%5C16%261%26-3%2611%5Cend%7Barray%7D%5Cright%5D)
<h3>How to determine the matrix d?</h3>
Given the elements of the matrix C.
The matrix c is represented by its rows and columns element, and the arrangements are:
C11 = 3 C12 = 1 C13=-9 C14 = 8
C21 = 2 C22=2 C23 =0 C24 = 5
C31 = 16 C32 = 1 C33=-3 C34=11
Remove the matrix name and position
3 1 9 8
2 2 0 5
16 1 -3 11
Represent properly as a matrix:
![C = \left[\begin{array}{cccc}3&1&-9&8\\2&2&0&5\\16&1&-3&11\end{array}\right]](https://tex.z-dn.net/?f=C%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%261%26-9%268%5C%5C2%262%260%265%5C%5C16%261%26-3%2611%5Cend%7Barray%7D%5Cright%5D)
Matrix C equals matrix D.
So, we have:
![D = \left[\begin{array}{cccc}3&1&-9&8\\2&2&0&5\\16&1&-3&11\end{array}\right]](https://tex.z-dn.net/?f=D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%261%26-9%268%5C%5C2%262%260%265%5C%5C16%261%26-3%2611%5Cend%7Barray%7D%5Cright%5D)
Hence, the matrix that represents matrix D is ![\left[\begin{array}{cccc}3&1&-9&8\\2&2&0&5\\16&1&-3&11\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%261%26-9%268%5C%5C2%262%260%265%5C%5C16%261%26-3%2611%5Cend%7Barray%7D%5Cright%5D)
Read more about matrix at:
brainly.com/question/2456804
#SPJ1