Answer:
(C) T
The tension T at equilibrium will be equal to the Buoyant force.
The Buoyant force is given by:
Fb = density x acceleration due to gravity x volume displaced
The change in height doesn't affect the Buoyant force and hence the tension.
Note: The figure of question is added in the attachment
While self-gravity pulls the star inward and tries to make it collapse, thermal pressure (heat created by fusion) pushes outward. These two forces cancel each other out in a main sequence star, thus making it stable.
Answer:
what do you need help with? Like which type of print each image is?
Explanation:
Answer:
2 m/s
Explanation:
Parameters given:
Mass of first skateboard, m = 3 kg
Initial speed of first skateboard, u = 4 m/s
Mass of second skateboard, M = 1 kg
Initial speed of second skateboard, U = 0 m/s
Final speed of second skateboard, V = 6 m/s
Using the principle of the conservaton of momentum, the total initial momentum is equal to the total final momentum.
Momentum is the product of mass and velocity. This implies that:
m*u + M*U = m*v + M*V
(3*4) + (1*0) = (3*v) + (1*6)
12 + 0 = 3v + 6
=> 3v = 12 - 6
3v = 6
v = 6/3 = 2 m/s
The final speed of the 3 kg skateboard is 2 m/s
Try this solution, answers are marked with red colour.