Answer:
I₁ = 1.6 A (through 7 Ohm Resistor)
I₂ = 1.3 A (through 8 Ohm Resistor)
I₃ = I₁ - I₂ = 1.6 A - 1.3 A = 0.3 A (through 4 Ohm Resistor)
Explanation:
Here we consider two loops doe applying Kirchhoff's Voltage Law (KVL). The 1st loop is the left side one with a voltage source of 12 V and the 2nd Loop is the right side one with a voltage source of 9 V. We name the sources and resistor's as follows:
R₁ = 7 Ω
R₂ = 4 Ω
R₃ = 8 Ω
V₁ = 12 V
V₂ = 9 V
Now, we apply KVL to 1st Loop:
V₁ = I₁R₁ + (I₁ - I₂)R₂
12 = 7I₁ + (I₁ - I₂)(4)
12 = 7I₁ + 4I₁ - 4I₂
I₁ = (12 + 4 I₂)/11 ------------ equation (1)
Now, we apply KVL to 2nd Loop:
V₂ = (I₂ - I₁)R₂ + I₂R₃
9 = (I₂ - I₁)(4) + 8I₂
9 = 4I₂ - 4I₁ + 8I₂
9 = 12I₂ - 4I₁ -------------- equation (2)
using equation (1)
9 = 12I₂ - 4[(12 + 4 I₂)/11]
99 = 132 I₂ - 48 - 16 I₂
147 = 116 I₂
I₂ = 147/116
I₂ = 1.3 A
use this value in equation 2:
9 = 12(1.3 A) - 4I₁
4I₁ = 15.6 - 9
I₁ = 6.6 A/4
I₁ = 1.6 A
Hence, the currents through all resistors are:
<u>I₁ = 1.6 A (through 7 Ohm Resistor)</u>
<u>I₂ = 1.3 A (through 8 Ohm Resistor)</u>
<u>I₃ = I₁ - I₂ = 1.6 A - 1.3 A = 0.3 A (through 4 Ohm Resistor)</u>
The ability of solid rock to flow is called Plasticity.
Plasticity is the deformation of a solid mateial which resulted in non reversible changes of shape in response to applied force.
Another example of plasticity is when you bend metal through a forcer force to create an art or kitchen set
Answer:
105 m/s
Explanation:
Given that the speed of train A,
= 45 m/s from west to east.
Speed of train B,
= 60 m/s from east to west.
Train B is moving in the opposite direction with respect to the speed of train A. Assuming that the speed from east to west direction is positive.
So, the speed of train A from east to west= - 45 m/s
The speed of train B w.r.t train A
m/s
Hence, the speed of train B w.r.t train A is 105 m/s from east to west.
Explanation:
Precision represents that how close the different measurements of the sample one take are to one another.
- One can increase the precision in lab by paying attention to each and every detail.
- Usage of the equipment properly and also increasing the sample size.
-
Ensuring that the equipment is calibrated properly. They should be clean and functioning. Using equipment which is not functioning correctly can cause results to swing wildly and also bits of the debris stuck to the equipment can influence the measurements of the mass and the volume.
- Each measurement must be taken multiple times, especially if experiments in which combining of the substances in specific amounts is involved.
D, 0.140 liters! Hang on a sec and I'll show you a trick I use.