Answer:
The angular frequency of the block is ω = 5.64 rad/s
Explanation:
The speed of the block v = rω where r = amplitude of the oscillation and ω = angular frequency of the oscillation.
Now ω = v/r since v = speed of the block = 62 cm/s and r = the amplitude of the oscillation = 11 cm.
The angular frequency of the oscillation ω is
ω = v/r
ω = 62 cm/s ÷ 11 cm
ω = 5.64 rad/s
So, the angular frequency of the block is ω = 5.64 rad/s
Answer
given,
I = 0.140 kg ·m²
decrease from 3.00 to 0.800 kg ·m²/s in 1.50 s.
a) ![\tau = \dfrac{\Delta L}{\Delta t}](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%5Cdfrac%7B%5CDelta%20L%7D%7B%5CDelta%20t%7D)
![\tau = \dfrac{0.8-3}{1.5}](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%5Cdfrac%7B0.8-3%7D%7B1.5%7D)
τ = -1.467 N m
b) angle at which fly wheel will turn
![\theta= \omega t +\dfrac{1}{2}\alpha t^2](https://tex.z-dn.net/?f=%5Ctheta%3D%20%5Comega%20t%20%2B%5Cdfrac%7B1%7D%7B2%7D%5Calpha%20t%5E2)
![\theta= \dfrac{L}{I} t +\dfrac{1}{2}\dfrac{\tau}{I}t^2](https://tex.z-dn.net/?f=%5Ctheta%3D%20%5Cdfrac%7BL%7D%7BI%7D%20t%20%2B%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7B%5Ctau%7D%7BI%7Dt%5E2)
![\theta= \dfrac{3}{0.14}\times 1.5+\dfrac{1}{2}\dfrac{-1.467}{0.14}\times 1.5^2](https://tex.z-dn.net/?f=%5Ctheta%3D%20%5Cdfrac%7B3%7D%7B0.14%7D%5Ctimes%201.5%2B%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7B-1.467%7D%7B0.14%7D%5Ctimes%201.5%5E2)
θ = 20.35 rad
c) work done on the wheel
W = τ x θ
W = -1.467 x 20.35 rad
W = -29.86 J
d) average power of wheel
![P_{av} =-\dfrac{W}{t}](https://tex.z-dn.net/?f=P_%7Bav%7D%20%3D-%5Cdfrac%7BW%7D%7Bt%7D)
![P_{av} =-\dfrac{(-29.86)}{1.5}](https://tex.z-dn.net/?f=P_%7Bav%7D%20%3D-%5Cdfrac%7B%28-29.86%29%7D%7B1.5%7D)
Spark altnator spark altnator spark altnator spark altnator
Answer: 420
Explanation: you have to do 210x2 to get your answer!
easy peasy what's next!!