<u>Answer:</u>
<em>A water strider can walk along the surface of earth due to the surface tension of water.
</em>
<u>Explanation:</u>
Fluids have a <em>tendency to shrink to minimum possible surface area</em> and this is called surface tension. It usually occurs due to the greater force of cohesion between molecules of same substance when compared to adhesive force between molecules of different substances. Objects with greater densities can float along water surface due to the <em>role played by surface tension.
</em>
When insects walk along the water surface they are pulled down due to gravity. But the force of attraction between the legs of the insect and water molecules is minimal. Thus the surface tension would always tend to maintain the <em>flatness of water overcoming</em> the push by the legs of the strider.
When the insect’s weight pulls it down , the surface tension pushes it upwards overcoming this force of gravity. This is how<em> water striders move along the surface of water. </em>
Heat flow occurs when two systems in contact are not at the same temperature.
What is heat flow?
- when two bodies of different temperatures are in contact, heat flow takes place.
- Heat flows till the two bodies in contact achieve equilibrium.
- To achieve equilibrium, heat flows from hotter bodies to colder bodies.
- There is no heat flow after achieving the state of equilibrium because the amount of heat flow from one body to the other is the same.
For more information, please visit: brainly.com/question/11297584?referrer=searchResults
#SPJ4
3.4814815 (or 3 13/27) m/s
speed = distance/time
3.4814815 (or 3 13/27) = 94/27
The answer is 125 Joules
The first thing to take note of is the work equation: W=F×D
Since we already have our force and our distance that will help make this problem easier.
So, W=25*5
W=125
Therefore, our answer is 125 Joules since work is measured in joules
Hope this helped!! :)
The amount of heat needed to increase the temperature of a substance by

is given by

where m is the mass of the substance, Cs is its specific heat capacity and

is the increase of temperature.
If we re-arrange the formula, we get

And if we plug the data of the problem into the equation, we can find the specific heat capacity of the substance: