Answer:
(A) Set A is linearly independent and spans
. Set is a basis for
.
Step-by-Step Explanation
<u>Definition (Linear Independence)</u>
A set of vectors is said to be linearly independent if at least one of the vectors can be written as a linear combination of the others. The identity matrix is linearly independent.
<u>Definition (Span of a Set of Vectors)</u>
The Span of a set of vectors is the set of all linear combinations of the vectors.
<u>Definition (A Basis of a Subspace).</u>
A subset B of a vector space V is called a basis if: (1)B is linearly independent, and; (2) B is a spanning set of V.
Given the set of vectors
, we are to decide which of the given statements is true:
In Matrix
, the circled numbers are the pivots. There are 3 pivots in this case. By the theorem that The Row Rank=Column Rank of a Matrix, the column rank of A is 3. Thus there are 3 linearly independent columns of A and one linearly dependent column.
has a dimension of 3, thus any 3 linearly independent vectors will span it. We conclude thus that the columns of A spans
.
Therefore Set A is linearly independent and spans
. Thus it is basis for
.
M∠P = 12°
m∠Q = 90° [A tangent line to a circle is perpendicular to the radius drawn to the tangent point]
m∠O = 90 - 12 = 78°
Answer: x=78°
I think this is the Domain. Since a domain is a group of numbers that can be entered in a function to create a valid output. They are set of all possible values of x which will satisfy a ffunction and output real y-values
Answer: Jeremy drove 84 miles.
Step-by-step explanation:
Let x represent the number of miles that Brenda drove.
If Jeremy drove twice
as far as Brenda, it means that the distance covered by Jeremy would be 2x miles
When they stopped after some time, they were already
126 miles apart. This means that the total distance covered by both of them is 126 miles. Therefore,
x + 2x = 126
3x = 126
x = 126/3
x = 42 miles
The number of miles that Jeremy drove is
42 × 2 = 84 miles