1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks [24]
2 years ago
8

Write without the absolute value sign |x-3| if x>4

Mathematics
2 answers:
Arisa [49]2 years ago
8 0
Answer: 8

Explanation: if x = 8 or higher then x is greater than 4
Oxana [17]2 years ago
5 0
Answer: X= 8

Why: 8-3 = 5 and 5 is the next number of 4 and is therefore greater than 4
You might be interested in
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
A box contains 12 1/2 square feet of tiles and costs $40.21. What is the price per square feet?
liraira [26]
The answer is $3.21.
To find the answer, divide the total cost by the number of sq ft to get the price per sq ft.
3 0
4 years ago
Read 2 more answers
david earns $1.50 per hour more than peter. together, they earn $940 if they both work 40 hours in a week. how much money per ho
Korolek [52]

Answer:

469.25

Step-by-step explanation:

peter=x

david=x+1.50

x+(x+1.50)=940

x=940-x-1.50

2x=940-1.50

2x=938.5

x=938.5/2

x=469.25

8 0
3 years ago
Which of the following expressions represents "three times the difference between t and y"?
ioda
Hi the awnser is 3(t-y) because you always do the math that is in the parentheses first!
6 0
3 years ago
A cylinder has a volume of 384 cubic inches and a height of 8 inches, what is the radius
Triss [41]
The answer is:  3.91 inches .
___________________________________________

Note:  Volume of cylinder: V = (base area) * (height);

in which: V = volume = 384 in.³ ;
              h = height = 8 in. ; 
              Base area = area of the base (that is; "circle") = π r² ;
                                         in which; "r" = radius; 
___________________________________________
Solve for "r" :
___________________________________________
 V = π r² * (8 in.) ; 

384 in.³ = (8 in.) * (π r²) ;
___________________________________________
Divide EACH SIDE of the equation by "8" ; 
___________________________________________
 (384 in.³) / 8 = [ (8 in.) * (π r²) in.] / 8 ; 
___________________________________________
 to get: 
___________________________________________
   48 in.³ = (π r²) in.² * in.   ;
___________________________________________
 ↔  (π r²) in.² * in. =  48 in.³  ;  
___________________________________________
Rewrite this equation; using "3.14" as an approximation for: π ;
__________________________________________________
 (3.14 * r²) in.² * in. =  48 in.³ 
_______________________________________
Divide EACH SIDE of the equation by:

"[(3.14)*(in.²)*(in.)]" ;  to isolate "r² " on one side of the equation; 
                                 (since we want to solve for "r") ;
_____________________________________________________
→ [(3.14 * r²) in.² * in.] / [(3.14)*(in.²)*(in.)]  = 48 in.³ / [(3.14)*(in.²)*(in.)] ; 
__________________________________________________
→ to get:   r² = 48/3.14 ;
________________________
      → r² = 15.2866242038216561 ;
_______________________________________
To solve for "r" (the radius; take the "positive square root" of EACH side of the equation:
__________________________________________________
     → +√(r²) = +√(15.2866242038216561)
__________________________________________________
     →  r = 3.9098112747064475286  ; round to 3.91 inches .
___________________________________________________
4 0
3 years ago
Read 2 more answers
Other questions:
  • Please help! Put answers for the green boxes. Thanks!<br><br> -ASIAX
    6·1 answer
  • Two true or false :)
    6·1 answer
  • 15pts<br> f(x)=(x+6)/2<br> g(x)=2x - 6<br> Show your work to evaluate g(f(x)).
    5·1 answer
  • Assume that there is a 4​% rate of disk drive failure in a year. a. If all your computer data is stored on a hard disk drive wit
    13·1 answer
  • which parachute has a slower decent a red parachute that falls 10 feet in 4 seconds or a blue parachute that falls 12 feel in 6
    12·1 answer
  • an airplane descends 1.5 miles to an elevation of 5.25 miles.find the elevation of the plane before its descent.
    15·1 answer
  • Johns bill at the pizza place was $36.20 he left a 15% tip how much was his total bill​
    6·1 answer
  • 30 points if you answer this!
    11·2 answers
  • 6+2.5-8
    8·1 answer
  • 30 POINTS !! PLEASE HELP ASAP!!
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!