Answer:
Step-by-step explanation:
PQRS is a parallelogram with QR = 6 cm, QT = 3 cm and ∠PSR = 115°.
a). By the property of a parallelogram,
"Diagonals of a parallelogram bisect each other"
QT = TS
QS = 2(QT)
= 2(3)
= 6 cm
b). "Adjacent angles of a parallelogram are supplementary"
m∠PSR + m∠SRQ = 180°
115° + m∠SRQ = 180°
m∠SRQ = 65°
c). Since, SQ = SR = 6 cm
m∠QSR = m∠SRQ [Opposite angles of the equal sides of an isosceles triangle]
m∠QSR = 65°
By applying triangle sum theorem in ΔQSR,
m∠SQR + m∠QRS + m∠QSR = 180°
m∠SQR + 65° + 65° = 180°
m∠SQR = 50°
And we are waiting to see the functions listed?
Answer:
Figure out the x and y intercepts.
Step-by-step explanation:
you should find what the y or x intercept's are.
To figure that out you need to divide the number next to x or y to 8. use x to find out x intercept and y for y intercept.
lets find out y intercept
8 / -2 = -4
and now x intercept
8 / 3 = 1.75 or 1 (3/4)
Once you found out the intercepts you can now graph the equation.
Answer:
Step-by-step explanation:
(x+5)² = x² + 10x + 25
Answer:
Integration of I=
=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)
Step-by-step explanation:
Given integral is I= 
Take logx=t





I= 
I= 
Using integration by part,
![I= (t)\int [e^{(n+1)t}]\, dt-\int[\frac{d}{dt}{t}\times\int (e^{(n+1)t})]\\\\I= (t) [\frac{1}{n+1}e^{(n+1)t}]-\int[1\times\frac{1}{n+1}e^{(n+1)t}]\,dt\\\\I=[\frac{t}{n+1}e^{(n+1)t}]-[\frac{1}{(n+1)^{2}}e^{(n+1)t}]](https://tex.z-dn.net/?f=I%3D%20%28t%29%5Cint%20%5Be%5E%7B%28n%2B1%29t%7D%5D%5C%2C%20dt-%5Cint%5B%5Cfrac%7Bd%7D%7Bdt%7D%7Bt%7D%5Ctimes%5Cint%20%28e%5E%7B%28n%2B1%29t%7D%29%5D%5C%5C%5C%5CI%3D%20%28t%29%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5Cint%5B1%5Ctimes%5Cfrac%7B1%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D%5C%2Cdt%5C%5C%5C%5CI%3D%5B%5Cfrac%7Bt%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29t%7D%5D)
Writing in terms of x
I=![[\frac{t}{n+1}e^{(n+1)t}]-[\frac{1}{(n+1)^{2}}e^{(n+1)t}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bt%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29t%7D%5D)
I=![[\frac{logx}{n+1}e^{(n+1)logx}]-[\frac{1}{(n+1)^{2}}e^{(n+1)logx}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29logx%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29logx%7D%5D)
I=![[\frac{logx}{n+1}e^{logx^{(n+1)}}]-[\frac{1}{(n+1)^{2}}e^{logx^{(n+1)}}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7De%5E%7Blogx%5E%7B%28n%2B1%29%7D%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7Blogx%5E%7B%28n%2B1%29%7D%7D%5D)
I=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)
Thus,
Integration of I=
=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)