Answer:
6.2 calories
Explanation:
Data Given:
change in temperature = 20 °C
specific heat of gold = 0.031 calories/gram °C
mass of gold = 10.0 grams
Amount of Heat = ?
Solution:
Formula used
Q = Cs.m.ΔT
Where:
Q = amount of heat
Cs = specific heat of gold = 0.031 calories/gram °C
m = mass
ΔT = Change in temperature
Put values in above equation
Q = 0.031 calories/gram °C x 10.0 g x 20 °C
Q = 6.2 calories
So option A is correct = 6.2 calories
Answer:
Using Phosphoric acid will work perfectly for producing Hydrogen halides because its not an Oxidizing agent. ...
Using an ionic chloride and Phosphoric acid
H3PO4 + NaCl ==> HCl + NaH2PO4
H3PO4 + NaI ==> HI + NaH2PO4
H2SO4 + NaCl ==> HCl + NaHSO4
This method(Using H2So4) will work for all hydrogen hydrogen halide except Hydrogen Iodide and Hydrogen Bromide.
The Sulphuric acid won't be useful for producing Hydrogen Iodide because its an OXIDIZING AGENT. Whist producing the Hydrogen Iodide... Some of the Iodide ions are oxidized to Iodine.
2I-² === I2 + 2e-
Explanation:
Answer:
the first statement
Explanation:
hope this helps
please like and Mark as brainliest
Answer: -
1 mol
Explanation: -
Number of moles of Sulphur S = 7
Number of moles of O2 = 9
The balanced chemical equation for the reaction is
2S (s)+3 O2 (g)→2SO3(g)
From the above reaction we can see that
3 mol of O2 react with 2 mol of S
9 mol of O2 will react with

= 6 mol of S
Unreacted S = 7 - = 1 mol.
If a reaction vessel initially contains 7 mol S and 9 mol O2
1 mole of s will be in the reaction vessel once the reactants have reacted as much as possible
last one? don't take my word though
Explanation:
the suns heat is related to nuclear fusion