Answer:
- Compress
- Fixed
- Melts
- Melting Point
- Freezing Point
- High
- Crystalline
- Lattice
- Unit cell
- Amorphous solids
Explanation:
Solids tend to be dense and difficult to <u>compress.</u>
They do not flow or take the shape of their containers, like liquids do, because the particles in solids vibrate around <u>fixed</u> points.
When a solid is heated until its particles vibrate so rapidly that they are no longer held in fixed positions, the solid <u>melts</u>.
<u>Melting point</u> is the temperature at which a solid changes to a liquid. The melting and <u>freezing point</u> of a substance are at the same temperature.
In general, ionic solids tend to have relatively <u>high</u> melting points, while molecular solids tend to have relatively low melting points.
Most solids are <u>crystalline</u>
The particles are arranged in a pattern known as a crystal <u>lattice</u>
The smallest subunit of a crystal lattice is the <u>unit cell</u>
Some solids lack an ordered internal structure and are called <u>amorphous solids.</u>
A deep-sea diver must descend and ascend in short steps to equalize pressure on his body.
Molarity is the number of moles of solute in one liter of solution whereas molality is the number of moles of solute present in 1 kilo gram of solution.
Molarity is denoted by M and molality denoted by m





Mass of solution

Density of solution = 1.1 g /mL
d = 1.1 = (W_B + W_A) /V

V = 910.11 mL
molarity of solution is:

= 0.0433 /0.910 = 0.0474 M
Thus, moalrity of solution is 0.0474 M
Answer:
6.2
Explanation:
<h2>I AM SMOooOooOooORT</h2><h2 /><h2>no but really trust the process</h2><h2 />
<span>The test dummy will continue forward until it makes contact with another object.</span>