Answer:
a) Probability of picking Two MAGA buttons without replacement = 0.15
b) Probability of picking a MAGA and GND button in that order = 0.0833
Probability of picking a MAGA and GND button in with the order unimportant = 0.167
Step-by-step explanation:
10 MAGA [MAKE AMERICA GREAT AGAIN] buttons, 5 GND [GREEN NEW DEAL] buttons and 10 NAW [NEVER A WALL] buttons.
Total number of buttons = 10 + 5 + 10 = 25
Let probability of picking a MAGA button be P(M) = 10/25 = 0.4
Probability of picking a GND button be P(G) = 5/25 = 0.2
Probability of picking a NAW button be P(N) = 10/25 = 0.4
a) Probability of picking Two MAGA buttons without replacement = (10/25) × (9/24) = 3/20 = 0.15
b) Probability of picking a MAGA and GND button in that order = (10/25) × (5/24) = 1/12 = 0.0833
Probability of picking a MAGA and GND button in with the order unimportant = [(10/25) × (5/24)] + [(5/25) × (10/24)] = 1/6 = 0.167
Answer:
−20x − 8
Step-by-step explanation:
Answer:
The first choice.
Step-by-step explanation:
Your graph should look like one below.
Answer:
21 is common denominator.
15 and 7 are the corresponding numberators.
Step-by-step explanation:
You multiply the 7 and 6, then apply to the fractions, and slowly reduce until you find a good match.
We write the equation in the form of directional.
y -1 = 6x ⇔ y = 6x + 1
y - 1 = 3x ⇔ y = 3x + 1
y - 7 = 2x - 6 ⇔ y = 2x - 6 + 7
y = 2x + 1
y - 7 = x - 2 ⇔ y = x - 2 + 7
y = x + 5
Equations cleverly arranged .
Point Q = (0,1)
b factor , not only fits the last equation
In the drawing have engraved points Q and R are tangent linear function appropriate to that point . This graphics solution . y = 3x + 1
Answer b
We check choice by the system of equations , where substitute wartoćsi points Q and R to the model equations linear function
The result of equations confirmed our choice Answer b