The change in the water vapors is modeled by the polynomial function c(x). In order to find the x-intercepts of a polynomial we set it equal to zero and solve for the values of x. The resulting values of x are the x-intercepts of the polynomial.
Once we have the x-intercepts we know the points where the graph crosses the x-axes. From the degree of the polynomial we can visualize the end behavior of the graph and using the values of maxima and minima a rough sketch can be plotted.
Let the polynomial function be c(x) = x
² -7x + 10
To find the x-intercepts we set the polynomial equal to zero and solve for x as shown below:
x
² -7x + 10 = 0
Factorizing the middle term, we get:
x
² - 2x - 5x + 10 = 0
x(x - 2) - 5(x - 2) =0
(x - 2)(x - 5)=0
x - 2 = 0 ⇒ x=2
x - 5 = 0 ⇒ x=5
Thus the x-intercept of our polynomial are 2 and 5. Since the polynomial is of degree 2 and has positive leading coefficient, its shape will be a parabola opening in upward direction. The graph will have a minimum point but no maximum if the domain is not specified. The minimum points occurs at the midpoint of the two x-intercepts. So the minimum point will occur at x=3.5. Using x=3.5 the value of the minimum point can be found. Using all this data a rough sketch of the polynomial can be constructed. The figure attached below shows the graph of our polynomial.
Answer:
4
Step-by-step explanation:
because i know how to do it
You would use cross multiplication:
X/2,000 = 3/5
Multiply: 2,000*3= 6,000
Divide: 6,000/5
Answer: 1,200 doctors use brand x
0.19 for one cookie and 0.59 for one doughnut
x for how much one cookie costs and y for how much one doughnut costs
6x+4y=3.5
12x+5y=5.23
solve by substitution: (elimination would work too)
4y=3.5-6x
y=0.875-1.5x
12x+5(0.875-1.5x)=5.23
12x+4.375x-7.5x=5.23
4.5x=0.855
x=0.19
now use x to solve for y:
6(0.19)+4y=3.5
1.14+4y=3.5
2.36=4y
y=0.59
Check the work: 6(0.19)+4(0.59)=3.5