Answer:
yes, it is a perfect square trinomial because the square of binomial are (x-0.375) (x-0.375)
Answer:
the nth term is -3n+13.
so if you substitute n for 63, the answer would be -176
Step-by-step explanation:
I dont know sorry. But you can ask your math teacher! THeir full of smart knowledge. And plus ur cheating by using this site STEPHIE!
Answer:
Step-by-step explanation:
Let the shorter side be x
Then the longer side is x + 1
<u>Perimeter is:</u>
- P = 2( x + x + 1) = 2(2x + 1) = 4x + 2
The value of perimeter is at most 60 meters. P ≤ 60.
<u>Solve the inequality:</u>
- 4x + 2 ≤ 60
- 4x ≤ 58
- x ≤ 58/4
- x ≤ 14.5
Since x is the integer, its greatest value is 14 m
Answer:
Step-by-step explanation:
Number of vertices
3
Variable constraints
a>0 and b>0
Diagonal lengths
(data not available)
Height
b
Area
A = (a b)/2
Centroid
x^_ = (a/3, b/3)
Mechanical properties:
Area moment of inertia about the x-axis
J_x invisible comma x = (a b^3)/12
Area moment of inertia about the y-axis
J_y invisible comma y = (a^3 b)/12
Polar moment of inertia
J_zz = 1/12 a b (a^2 + b^2)
Product moment of inertia
J_x invisible comma y = -1/24 a^2 b^2
Radii of gyration about coordinate axes
r_x = b/sqrt(6)
r_y = a/sqrt(6)
Distance properties:
Side lengths
a | sqrt(a^2 + b^2) | b
Hypotenuse
sqrt(a^2 + b^2)
Perimeter
p = sqrt(a^2 + b^2) + a + b
Inradius
r = 1/2 (-sqrt(a^2 + b^2) + a + b)
Circumradius
R = 1/2 sqrt(a^2 + b^2)
Generalized diameter
sqrt(a^2 + b^2)
Convexity coefficient
χ = 1
Mean triangle area
A^_ = (a b)/24