1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SCORPION-xisa [38]
3 years ago
9

2x^3-x^2-3x=210 the answer is 5 but I want to know why.

Mathematics
2 answers:
miv72 [106K]3 years ago
6 0
You want to know why what?
mel-nik [20]3 years ago
4 0

Answer:

x=5,\frac{-9+\sqrt{255}i }{4} ,\frac{-9-\sqrt{255}i }{4}

Step-by-step explanation:

1) Move all terms to one side.

2x^{3} -x^{2} -3x-210=0

2) Factor 2{x}^{3}-{x}^{2}-3x-210 using Polynomial Division.

1 -  Factor the following.

2x^{3} -x^{2} -3x-210

2 -  First, find all factors of the constant term 210.

1,2,3,4,5,6,7,10,14,15,21,30,35,42,70,105,210

3) Try each factor above using the Remainder Theorem.

Substitute 1 into x. Since the result is not 0, x-1 is not a factor..

2*1^{3} -1^{2} -3*1-210=-212

Substitute -1 into x. Since the result is not 0, x+1 is not a factor..

2(-1)^{3} -(-1)^{2} -3*-1-210=-210

Substitute 2 into x. Since the result is not 0, x-2 is not a factor..

2*2^{3} -2^{2} -3*2-210=-204

Substitute -2 into x. Since the result is not 0, x+2 is not a factor..

2{(-2)}^{3}-{(-2)}^{2}-3\times -2-210 = -224

Substitute 3 into x. Since the result is not 0, x-3 is not a factor..

2\times {3}^{3}-{3}^{2}-3\times 3-210 = -174

Substitute -3 into x. Since the result is not 0, x+3 is not a factor..

2{(-3)}^{3}-{(-3)}^{2}-3\times -3-210 = -264

Substitute 5 into x. Since the result is 0, x-5 is a factor..

2\times {5}^{3}-{5}^{2}-3\times 5-210 =0

------------------------------------------------------------------------------------------

⇒ x-5

4)  Polynomial Division: Divide 2{x}^{3}-{x}^{2}-3x-210  by x-5.

                                               2x^{2}                       9x                      42

                                      -------------------------------------------------------------------------

x-5                               |    2x^{3}                          -x^{2}                     -3x     -210

                                           2x^{3}                             -10x^{2}

                                        -----------------------------------------------------------------------

                                                                             9x^{2}                -3x       -210

                                     --------------------------------------------------------------------------

                                                                          42x                              -210

                                                                         42x                               -210

                                      -------------------------------------------------------------------------

5)  Rewrite the expression using the above.

2x^2+9x+42

(2x^2+9x+42)(x-5)=0

3) Solve for x.

x=5

4)  Use the Quadratic Formula.

1 - In general, given a{x}^{2}+bx+c=0 , there exists two solutions where:

x=\frac{-b+\sqrt{b^{2} -4ac} }{2a} ,\frac{-b-\sqrt{b^2-4ac} }{2a}

2 -  In this case, a=2,b=9 and c = 42.

x=\frac{-9+\sqrt{9^2*-4*2*42} }{2*2} ,\frac{-9-\sqrt{9^2-4*2*42} }{2*2}

3 - Simplify.

x=\frac{-9+\sqrt{255}i }{4} ,\frac{-9-\sqrt{255}i }{4}

5) Collect all solutions from the previous steps.

x=5,\frac{-9+\sqrt{255}i }{4} ,\frac{-9-\sqrt{255}i }{4}

You might be interested in
Graph A represents the function f(x) = root(3, x). Graph B and graph C transformations of graph A. The function represented by g
ch4aika [34]

Answer:

  • g(x) = root(3, x-1)
  • h(x) = root(3, x) -1

Step-by-step explanation:

The graph of f(x) is translated (right, up) = (h, k) to ...

  g(x) = f(x -h) +k

___

Graph B is translated right 1 unit, so its function is ...

  g(x) = f(x -1) = root(3, x-1)

__

Graph C is translated down 1 unit, so its function is ...

  h(x) = f(x) -1 = root(3, x) -1

4 0
3 years ago
PLEASE HELP!!! WILL MARK BRAINLEIST
Ksju [112]
The volume is 1494.35
The formula is length times height adding the bases than divided it by 2
6 0
3 years ago
Please help me qdnjrh24uieoqdjjhcs
Alborosie

Answer:

girl what

Step-by-step explanation:

5 0
3 years ago
jess wants to make cupcakes. To make cupcakes, she needs 3 1/4 cups of flour per batch of cupcakes. If Jess has 57 cups of flour
inysia [295]
To solve this, we have to divide 57 cups (the total amount she has) by 3.25 (the amount she needs per batch). When we do this, we get 17. 54, but we'll round down because Jess can't make 0.54 of a batch of cupcakes.
Your answer should be 17 batches. I hope this helps!
7 0
3 years ago
Read 2 more answers
Any help would be appreciated(brainly for best answer)
ziro4ka [17]

Answer:

80*

80*

75*

120*

Step-by-step explanation:

both angle 1 and 2 for the first image have the same value as  the other angle of 80* because it is a set of parallel lines and one line going through it.

1 on the next set of images is 75* because is is an alternate exterior angle.

2 of the last set of images is 120* because it is same side interior angles.

5 0
3 years ago
Other questions:
  • this table shows input and output values for a linear function f(x). What is the difference of outputs for any two inputs that a
    13·2 answers
  • Help: theoretical and experimental probability
    11·1 answer
  • If the length of the side of a square is 3X-y, what is the area of the square in terms of x and y?
    10·2 answers
  • Can someone find the total area of this poster
    14·1 answer
  • Which expression is equivalent to i²³³?<br><br> 1<br> –1<br> i<br> –i
    15·2 answers
  • Enter the value of (1)(-8) (4)​
    13·2 answers
  • Y need the operacion for the math
    10·2 answers
  • What is the distance between the points (-2,3) and (5, -1)?
    9·1 answer
  • Please help.<br> Is algebra.<br> PLEASE HELP NO LINKS OR FILES
    14·1 answer
  • Help please I’ll give you 45 points
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!