Answer:
14. B 15. D 16. C 17. B
Explanation:
The spontaneous reaction that occurs when the cell operates is shown below:
⇒
We need to select the correct option from the list below for the following questions.
(A) Voltage increases. (B) Voltage decreases but remains > zero. (C) Voltage becomes zero and remains at zero. (D) No change in voltage occurs. (E) Direction of voltage change cannot be predicted without additional information.
14. A 50-milliliter sample of a 2-molar
solution is added to the left beaker.
If a 50-milliliter sample of a 2-molar
solution is added to the left beaker, the voltage decreases but its value remains greater than zero. The correct option is B
15. The silver electrode is made larger.
If the silver electrode is made larger, no change in the value of the voltage since we don't have the idea of the initial value. The correct option is D.
16. The salt bridge is replaced by a platinum wire.
If the salt bridge is replaced by a platinum wire, there will be no passage of electrons because electrons can't pass through a platinum wire. Therefore, the voltage will be zero and remains at zero. The correct option is C.
17. Current is allowed to flow for 5 minutes.
If current is allowed to flow for 5 minutes, the voltage decreases but its value remains greater than zero. The correct option is B.
Volcano experiment
Volcano lavatory
Volcano extravaganza
Volcano blow thrash
Answer:
0.3267 M
Explanation:
To solve this problem, first we calculate how many moles of Mn(ClO₄)₂ are contained in 23.640 g of Mn(ClO₄)₂·6H₂O.
Keep in mind that the crystals of Mn(ClO₄)₂ are hydrated, and <em>we need to consider those six water molecules when calculating the molar mass of the crystals</em>.
Molar mass of Mn(ClO₄)₂·6H₂O = 54.94 + (35.45+16*4)*2 + 6*18 = 361.84 g/mol
Now we <u>proceed to calculate</u>:
- 23.640 g Mn(ClO₄)₂·6H₂O ÷ 361.84 g/mol = 0.0653 mol Mn(ClO₄)₂·6H₂O = mol Mn(ClO₄)₂
Now we divide the moles by the volume, to <u>calculate molarity</u>:
- 200 mL⇒ 200/1000 = 0.200 L
- 0.0653 mol Mn(ClO₄)₂ / 0.200 L = 0.3267 M
The correct letter to your answer would be A
Answer:
Total protein range. The normal range for total protein is between 6 and 8.3 grams per deciliter (g/dL). This range may vary slightly among laboratories.
Explanation: