Answer:
63.05% of MgCO3.3H2O by mass
Explanation:
<em>of MgCO3.3H2O in the mixture?</em>
The difference in masses after heating the mixture = Mass of water. With the mass of water we can find its moles and the moles and mass of MgCO3.3H2O to find the mass percent as follows:
<em>Mass water:</em>
3.883g - 2.927g = 0.956g water
<em>Moles water -18.01g/mol-</em>
0.956g water * (1mol/18.01g) = 0.05308 moles H2O.
<em>Moles MgCO3.3H2O:</em>
0.05308 moles H2O * (1mol MgCO3.3H2O / 3mol H2O) =
0.01769 moles MgCO3.3H2O
<em>Mass MgCO3.3H2O -Molar mass: 138.3597g/mol-</em>
0.01769 moles MgCO3.3H2O * (138.3597g/mol) = 2.448g MgCO3.3H2O
<em>Mass percent:</em>
2.448g MgCO3.3H2O / 3.883g Mixture * 100 =
<h3>63.05% of MgCO3.3H2O by mass</h3>
The answer is A. you sre correct!
Answer: D:wavelenght
Explanation: Students will understand that shorter wavelengths have higher frequency and energy.
Answer : The value of
for the reaction is, -565.6 kJ
Explanation :
First we have to calculate the molar mass of CO.
Molar mass CO = Atomic mass of C + Atomic mass of O = 12 + 16 = 28 g/mole
Now we have to calculate the moles of CO.

Now we have to calculate the value of
for the reaction.
The balanced equation will be,

From the balanced chemical reaction we conclude that,
As,
of CO release heat = 10.1 kJ
So, 2 mole of CO release heat = 
Therefore, the value of
for the reaction is, -565.6 kJ (The negative sign indicates the amount of energy is released)