
The rule is that any number raised to the power of 0 equals to 1.
So if 2 or 1,000,000 is raised to the power of 0 it equals 1.
But 0 to the power 0 is undefined!
0 to any positive power is 0, so 0 to the power 0 should be 0. But any positive number to the power 0 is 1, so 0 to the power 0 should be 1. We can't have it both ways. Underlying this argument is the same idea as was used in the attempt to define 0 divided by 0.
The answer would be B. Earrings.
Downloaded Photomath it’s going to help you a lot, and show you step by step, also it’s free.
A complement is angle that can be added to another to equal 90 degrees.
So two times the same number would equal 90.
90 / 2 = 45
The angle that is its own complement is 45 degrees.
let's bear in mind that B is the midpoint and thus it cuts a segment into two equal halves.
![\bf \underset{\leftarrow \qquad \textit{\large 10x-6}\qquad \to }{\boxed{A}\stackrel{4x+2}{\rule[0.35em]{10em}{0.25pt}} B\stackrel{\underline{4x+2}}{\rule[0.35em]{10em}{0.25pt}\boxed{C}}} \\\\\\ AC=AB+BC\implies 10x-6=(4x+2)+(4x+2)\implies 10x-6=8x+4 \\\\\\ 2x-6=4\implies 2x=10\implies x=\cfrac{10}{2}\implies x= 5 \\\\[-0.35em] ~\dotfill\\\\ AC=(4x+2)+(4x+2)\implies AC=[4(5)+2]+[4(5)+2] \\\\\\ AC=22+22\implies AC=44](https://tex.z-dn.net/?f=%5Cbf%20%5Cunderset%7B%5Cleftarrow%20%5Cqquad%20%5Ctextit%7B%5Clarge%2010x-6%7D%5Cqquad%20%5Cto%20%7D%7B%5Cboxed%7BA%7D%5Cstackrel%7B4x%2B2%7D%7B%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%7D%20B%5Cstackrel%7B%5Cunderline%7B4x%2B2%7D%7D%7B%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%5Cboxed%7BC%7D%7D%7D%20%5C%5C%5C%5C%5C%5C%20AC%3DAB%2BBC%5Cimplies%2010x-6%3D%284x%2B2%29%2B%284x%2B2%29%5Cimplies%2010x-6%3D8x%2B4%20%5C%5C%5C%5C%5C%5C%202x-6%3D4%5Cimplies%202x%3D10%5Cimplies%20x%3D%5Ccfrac%7B10%7D%7B2%7D%5Cimplies%20x%3D%205%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20AC%3D%284x%2B2%29%2B%284x%2B2%29%5Cimplies%20AC%3D%5B4%285%29%2B2%5D%2B%5B4%285%29%2B2%5D%20%5C%5C%5C%5C%5C%5C%20AC%3D22%2B22%5Cimplies%20AC%3D44)