Answer : Tension in the line = 936.7 N
Explanation :
It is given that,
Mass of student, m = 65 kg
The angle between slackline and horizontal, 
The two forces that acts are :
(i) Tension
(ii) Weight
So, from the figure it is clear that :




Hence, this is the required solution.
D is your answer <span>have highly predictable orbits around the sun.
</span>
A) Both players are moving by uniformly accelerated motion, and we can write the position at time t of each of the two players as follows:


where

is the acceleration of the first player

is the acceleration of the second player

is the initial distance between the two players
and where I put a negative sign in front of the acceleration of the second player, since he's moving in the opposite direction of the first player.
The time t at which the two players collide is the time t at which

, therefore:

from whic we find

b) We can use the equation of

to find how far the first player run in t=8.5 s:
The net displacement at a point on the string where the pulses cross is 0.2 m.
The term "displacement" refers to a shift in an object's position. It has a magnitude and a direction, making it a vector quantity. An arrow pointing from the starting point to the finishing point serves as its symbol.
A string that is connected to a post at one end is used to transmit a sequence of pulses, each measuring 0.1 meters in amplitude.
At the post, the pulses are reflected and return along the string without losing any of their amplitude.
Now, let's say the ends are free.
There is no inversion on reflection if the end is free. The amplitude at their intersection is 2A.
Now, since A = 0.1 m
Then, 2A = 2(0.1) = 0.2 m
As a result, the net displacement at the string's intersection of two pulses is 0.2 m.
The correct option is (c).
Learn more about amplitude here:
brainly.com/question/3613222
#SPJ4
Explanation:
a chip on your shoulder is an example