Your pay is described by a piecewise function p(t) where t is hours worked.

The domain of this function is the number of hours you can work in a week—zero to 168. The range is the set of values p(t) can take on, which we have said is p(0) to p(168). This problem, however, is asking for the range for a typical 40-hour week. That will be p(0) to p(40):
the interval [0, 280].
Answer: The clubs goal is to raise $436.
Step-by-step explanation:
175% * x = 763 where x is the goal
1.75 *x = 763
1.75x = 763
x= 436
Answer:
(a) false
(b) true
(c) true
(d) true
(e) false
(f) true
(g) false
(h) true
(i) true
Step-by-step explanation:
(a) 15 ⊂ A, since 15 is not a set, but an element, we cannot say of an element to be subset of a set. False
(b) {15} ⊂ A The subset {15} is a subset of A, since every element of {15}, that is 15, belongs to A.
15 ∈ {15} and 15 ∈ { x ∈ Z: x is an integer multiple of 3 } 15 is an integer multiple of 3. since 15/3=5. True
(c)∅ ⊂ A
∅ is a subset of any set. True
(d) A ⊆ A
A is a subset of itself. True
(e)∅ ∈ B
∅ is not an element, it is a subset, so it does not belong to any set. False
(f)A is an infinite set.
Yes, there are infinite integers multiple of 3. True
(g)B is a finite set.
No, there are infinite integers that are perfect squares. False
(h)|E| = 3
The number of elements that belong to E are 3. True
(i)|E| = |F|
The number of elements that belong to F are 3. So is the number of elements of E. True
Can you please put the question?