<span>0.17708333333 should be the answer.</span>
Answer:
For this case we want to test if the the average monthly income of all students at college is at least $2000. Since the alternative hypothesis can't have an equal sign thne the correct system of hypothesis for this case are:
Null hypothesis (H0): 
Alternative hypothesis (H1): 
And in order to test this hypothesis we can use a one sample t or z test in order to verify if the true mean is at least 200 or no
Step-by-step explanation:
For this case we want to test if the the average monthly income of all students at college is at least $2000. Since the alternative hypothesis can't have an equal sign thne the correct system of hypothesis for this case are:
Null hypothesis (H0): 
Alternative hypothesis (H1): 
And in order to test this hypothesis we can use a one sample t or z test in order to verify if the true mean is at least 2000 or no
A. 108 degrees
b. 72 degrees
c. 108 degrees
Hope this helps :)
Answer:
Step-by-step explanation:
Researchers measured the data speeds for a particular smartphone carrier at 50 airports.
The highest speed measured was 76.6 Mbps.
n= 50
X[bar]= 17.95
S= 23.39
a. What is the difference between the carrier's highest data speed and the mean of all 50 data speeds?
If the highest speed is 76.6 and the sample mean is 17.95, the difference is 76.6-17.95= 58.65 Mbps
b. How many standard deviations is that [the difference found in part (a)]?
To know how many standard deviations is the max value apart from the sample mean, you have to divide the difference between those two values by the standard deviation
Dif/S= 58.65/23.39= 2.507 ≅ 2.51 Standard deviations
c. Convert the carrier's highest data speed to a z score.
The value is X= 76.6
Using the formula Z= (X - μ)/ δ= (76.6 - 17.95)/ 23.39= 2.51
d. If we consider data speeds that convert to z scores between minus−2 and 2 to be neither significantly low nor significantly high, is the carrier's highest data speed significant?
The Z value corresponding to the highest data speed is 2.51, considerin that is greater than 2 you can assume that it is significant.
I hope it helps!
Answer:Its math
Step-by-step explanation:
Its math Its math