If you draw a diagonal from upper left to lower right, you divide the figure into two triangles. One is a 3-4-5 right triangle (with area = (1/2)*3*4 = 6). The other is a 5-5-4 isosceles triangle.
The altitude of the isosceles triangle (upper left vertex to side 4) can be found from the Pythagorean theorem as
.. altitude = √(5^2 -2^2) = √21
So, the area of the isosceles triangle is
.. (1/2)*4*√21 = 2√21
The sum of the areas of the two triangles matches selection C.
Answer:
x = 30°
Step-by-step explanation:
Donde 2θ - Φ = 60 °, tenemos;
∠QMN = ∠QPM
Ф + ∠P / 2 + (180 - θ) = 180 (Suma de ángulos en un triángulo ΔQLP)
Por lo tanto, Ф + ∠P / 2 - θ = 0
Por lo tanto, ∠P / 2 = θ - Ф, también
270 ° + θ + x + ∠P / 2 = 360 (Suma de ángulos en un NOLP cuadrilátero) da
270 ° + θ + x + θ - Ф = 270 ° + 2 · θ - Ф + x = 360
Como 2 · θ - Ф = 60 °, tenemos;
270 ° + 60 + x = 360
x = 360 - 270 - 60 = 30 °
The answer is 26.33 repeating
How you get that answer is
First do N times 3
so the you have 3n + 5 = 84
minus 5 from both sides and then you get 3n = 79
divid both sides by 3 and then you get n = 26.33 reapting