Answer:
The answer is below
Step-by-step explanation:
Let S denote syntax errors and L denote logic errors.
Given that P(S) = 36% = 0.36, P(L) = 47% = 0.47, P(S ∪ L) = 56% = 0.56
a) The probability a program contains both error types = P(S ∩ L)
The probability that the programs contains only syntax error = P(S ∩ L') = P(S ∪ L) - P(L) = 56% - 47% = 9%
The probability that the programs contains only logic error = P(S' ∩ L) = P(S ∪ L) - P(S) = 56% - 36% = 20%
P(S ∩ L) = P(S ∪ L) - [P(S ∩ L') + P(S' ∩ L)] =56% - (9% + 20%) = 56% - 29% = 27%
b) Probability a program contains neither error type= P(S ∪ L)' = 1 - P(S ∪ L) = 1 - 0.56 = 0.44
c) The probability a program has logic errors, but not syntax errors = P(S' ∩ L) = P(S ∪ L) - P(S) = 56% - 36% = 20%
d) The probability a program either has no syntax errors or has no logic errors = P(S ∪ L)' = 1 - P(S ∪ L) = 1 - 0.56 = 0.44
X= -12.5 you add (4+3) then, you combine it with 18 to get 25, then you divide 25 by -2x
2 divides both numbers, so divide both numbers by 2 to get 3 and 7. These are relatively prime, so 2 is the gcd. The lcm is 6*14/2=42.
Answer:
Line A
Step-by-step explanation:
Line A has a constant of proportionality (slope) of 4.