1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoray [572]
4 years ago
5

Explain how the pythagorean theorem is used to derive the distance formula​

Mathematics
1 answer:
kenny6666 [7]4 years ago
3 0

Answer:

In the Pythagorean Theorem, a right triangles hypotenuse is found by a^2 +b^2= c^2. The distance formula is basically the same thing. With two points, a right triangle can be formed and the slop would be the hypotenuse. That's where the distance formula comes from

Step-by-step explanation:

You might be interested in
What is 91.35 divided by 36.75
skad [1K]

Answer:

2.48571428571

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Help please! thank u
Alexus [3.1K]
A is NOT a function because for some values of x you get more than one y value. For example if x=2 you get 2 values for y.
b is a function because for each x you get ONLY one y
5 0
3 years ago
Find the value of x<br>a) 5<br>b) 4<br>c) 6<br>d) 7​
Simora [160]
B because 20- 16 equals 4 I guess
6 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%20%5Crm%20%5Cint_%7B0%7D%5E%7B%20%20%5Cpi%20%7D%20%5Ccos%28%20%5Ccot%28x%29%20%20%20%20-%20%2
Nikolay [14]

Replace x with π/2 - x to get the equivalent integral

\displaystyle \int_{-\frac\pi2}^{\frac\pi2} \cos(\cot(x) - \tan(x)) \, dx

but the integrand is even, so this is really just

\displaystyle 2 \int_0^{\frac\pi2} \cos(\cot(x) - \tan(x)) \, dx

Substitute x = 1/2 arccot(u/2), which transforms the integral to

\displaystyle 2 \int_{-\infty}^\infty \frac{\cos(u)}{u^2+4} \, du

There are lots of ways to compute this. What I did was to consider the complex contour integral

\displaystyle \int_\gamma \frac{e^{iz}}{z^2+4} \, dz

where γ is a semicircle in the complex plane with its diameter joining (-R, 0) and (R, 0) on the real axis. A bound for the integral over the arc of the circle is estimated to be

\displaystyle \left|\int_{z=Re^{i0}}^{z=Re^{i\pi}} f(z) \, dz\right| \le \frac{\pi R}{|R^2-4|}

which vanishes as R goes to ∞. Then by the residue theorem, we have in the limit

\displaystyle \int_{-\infty}^\infty \frac{\cos(x)}{x^2+4} \, dx = 2\pi i {} \mathrm{Res}\left(\frac{e^{iz}}{z^2+4},z=2i\right) = \frac\pi{2e^2}

and it follows that

\displaystyle \int_0^\pi \cos(\cot(x)-\tan(x)) \, dx = \boxed{\frac\pi{e^2}}

7 0
2 years ago
Last year, Mr. Jones made $30,000. His boss just informed him that he will be receiving at least an 11.2% raise for this year. H
Lady bird [3.3K]

Answer:

$33 336

Step-by-step explanation:

Increase = 30 000 × 0.112

Increase = $3336

New salary = 30 000 + 3336

New salary = $33 336

7 0
3 years ago
Other questions:
  • Federica used 13.4 gallons of gasoline to drive 448.9 miles. what was the average number og miles she drove per gallon of gasoli
    12·2 answers
  • Taho Earns His Regular Pay Of $11 Per Hour For Up To 40 Hours Of Work Per Week. For Each Hour Over 40 Hours Of Work Per week.For
    15·1 answer
  • What is the vertical asymptote of y=1/x-2+3
    13·1 answer
  • Help! Can you answer this question and explain it to me?? It's due TOMORROW!!!!!☹️☹️
    9·1 answer
  • The length of a rectangle is 1 foot more than twice the width the perimeter is 44 feet find the dimensions of the rectangle
    15·1 answer
  • Can someone answer this question please answer it correctly if it’s correct I will mark you brainliest
    5·1 answer
  • What is the median of this graph?
    5·1 answer
  • A meteorologist reads radio signals to get information from a weather balloon. The last alert indicated that the angle of depres
    7·1 answer
  • 15 is what percentage of 25
    5·2 answers
  • What is the pythagorean thereom? And how is it used to solve triangles
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!