Answer:
see attached
Step-by-step explanation:
I find it convenient to let a graphing calculator draw the graph (attached).
__
If you're drawing the graph by hand, there are a couple of strategies that can be useful.
The first equation is almost in slope-intercept form. Dividing it by 2 will put it in that form:
y = 2x -4
This tells you that the y-intercept, (0, -4) is a point on the graph, as is the point that is up 2 and right 1 from there: (1, -2). A line through those points completes the graph.
__
The second equation is in standard form, so the x- and y-intercepts are easily found. One way to do that is to divide by the constant on the right to get ...
x/2 +y/3 = 1
The denominators of the x-term and the y-term are the x-intercept and the y-intercept, respectively. If that is too mind-bending, you can simply set x=0 to find the y-intercept:
0 +2y = 6
y = 6/2 = 3
and set y=0 to find the x-intercept
3x +0 = 6
x = 6/3 = 2
Plot the intercepts and draw the line through them for the graph of this equation.
___
Here, we have suggested graphing strategies that don't involve a lot of manipulation of the equations. The idea is to get there as quickly as possible with a minimum of mistakes.
I think it’s c or b but I’m positive it’s b
Yes because it goes up and back down
Answer:
<em>No, he should have set the sum of ∠AED and ∠DEC equal to 180°, rather then setting ∠AED and ∠DEC equal to each other</em>
Step-by-step explanation:
Find the diagram attached
If line AC and BD intersects, then m<AED + m<DEC = 180 (sum of angle on a straight line is 180 degrees)
Given
m<AED = 16x+8
m<DEC = 76 degrees
16x + 8 + 76 = 180
16x + 84 = 180
16x = 180-84
16x = 96
x = 96/16
x = 6
Hence the value of x is 6
Hence the correct option is <em>No, he should have set the sum of ∠AED and ∠DEC equal to 180°, rather then setting ∠AED and ∠DEC equal to each other</em>
Answer:
A = 450 cm²
Step-by-step explanation:
Since the right triangle is isosceles then the 2 logs are congruent , both 30 cm and at right angles to each other.
The area (A ) of the triangle is calculated as
A =
bh ( b is the base and h the perpendicular height )
Here b = h = 30 , then
A =
× 30 × 30 =
× 900 = 450 cm²