10 Bc if u add them all up it equals that
Converting angle measure of 55.45 to DMS notation we get 55 degrees 27 minutes 0 seconds
Step-by-step explanation:
We need to convert angle measure of 55.45 to DMS notation
DMS notation is Degree Minute and seconds
Solving:
We have 55.45, the value before decimal is considered as degrees and values after decimal can be minutes and seconds.
We can write it as 55 and 0.45
So, we have 55 degrees
To find minutes we will multiply 0.45 by 60
0.45*60 = 27 minutes
Since we have no decimal value in minutes so seconds will be 0
So, DMS will be 55 degrees 27 minutes 0 seconds
Hence converting angle measure of 55.45 to DMS notation we get 55 degrees 27 minutes 0 seconds
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = 90° → A + B = 90° - C
→ C = 90° - (A + B)
Use the Double Angle Identity: cos 2A = 1 - 2 sin² A
→ sin² A = (1 - cos 2A)/2
Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]
Use the Product to Sum Identity: cos (A - B) - cos (A + B) = 2 sin A · sin B
Use the Cofunction Identities: cos (90° - A) = sin A
sin (90° - A) = cos A
<u>Proof LHS → RHS:</u>
LHS: sin² A + sin² B + sin² C

![\text{Sum to Product:}\quad 1-\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\cos (A+B)\cdot \cos (A-B)+\sin^2 C](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cquad%201-%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B2%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A%2B2B%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A-2B%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%2B%5Csin%5E2%20C%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D1-%5Ccos%20%28A%2BB%29%5Ccdot%20%5Ccos%20%28A-B%29%2B%5Csin%5E2%20C)
Given: 1 - cos (90° - C) · cos (A - B) + sin² C
Cofunction: 1 - sin C · cos (A - B) + sin² C
Factor: 1 - sin C [cos (A - B) + sin C]
Given: 1 - sin C[cos (A - B) - sin (90° - (A + B))]
Cofunction: 1 - sin C[cos (A - B) - cos (A + B)]
Sum to Product: 1 - sin C [2 sin A · sin B]
= 1 - 2 sin A · sin B · sin C
LHS = RHS: 1 - 2 sin A · sin B · sin C = 1 - 2 sin A · sin B · sin C 
The function is symmetric in the line that goes trough the top. The top is on t=2.5 seconds. If you want to know on which time the height is equal to 15 feet, you draw a line on that height in the graph and see where it crosses. That is at t=1.25 and t=3.75