Hey!

Switch it around and it becomes:

First find 18 ÷ -6

Positive ÷ negative OR negative ÷ positive is always negative.
That leaves you with:

Switch that around and it becomes:

Find -3 + 5

That leaves you with:

Divide both sides by 2 to leave <em>x</em> alone


Answer:
Answer:
Quartile Statistics
First Quartile Q1 = 52
Second Quartile Q2 = 53.5
Third Quartile Q3 = 61
Interquartile Range IQR = 9
Median = Q2 x˜ = 53.5
Minimum Min = 49
Maximum Max = 74
Range R = 25
Step-by-step explanation:
Answer: Choice A) mean, there are no outliers
Have a look at the image attached below. I made two dotplots for the data points. The blue points represent bakery A. The red points represent bakery B. For any bakery, the points are fairly close together. There is no point that is off on its own. So there are no outliers, making the mean a good choice for the center. If there were outliers, then the median is a better choice. The mean is greatly affected by outliers, while the median is not.
Answer:
The probability that at least 280 of these students are smokers is 0.9664.
Step-by-step explanation:
Let the random variable <em>X</em> be defined as the number of students at a particular college who are smokers
The random variable <em>X</em> follows a Binomial distribution with parameters n = 500 and p = 0.60.
But the sample selected is too large and the probability of success is close to 0.50.
So a Normal approximation to binomial can be applied to approximate the distribution of X if the following conditions are satisfied:
1. np ≥ 10
2. n(1 - p) ≥ 10
Check the conditions as follows:

Thus, a Normal approximation to binomial can be applied.
So,

Compute the probability that at least 280 of these students are smokers as follows:
Apply continuity correction:
P (X ≥ 280) = P (X > 280 + 0.50)
= P (X > 280.50)

*Use a <em>z</em>-table for the probability.
Thus, the probability that at least 280 of these students are smokers is 0.9664.
The equation of the vertical parabola in vertex form is written as

Where (h, k) are the coordinates of the vertex and p is the focal distance.
The directrix of a parabola is a line which every point of the parabola is equally distant to this line and the focus of the parabola. The vertex is located between the focus and the directrix, therefore, the distance between the y-coordinate of the vertex and the directrix represents the focal distance.

Using this value for p and (3, 1) as the vertex, we have our equation