Answer:
C
Step-by-step explanation:
Answer: See Below
<u>Step-by-step explanation:</u>
NOTE: You need the Unit Circle to answer these (attached)
5) cos (t) = 1
Where on the Unit Circle does cos = 1?
Answer: at 0π (0°) and all rotations of 2π (360°)
In radians: t = 0π + 2πn
In degrees: t = 0° + 360n
******************************************************************************

Where on the Unit Circle does
<em>Hint: sin is only positive in Quadrants I and II</em>


In degrees: t = 30° + 360n and 150° + 360n
******************************************************************************

Where on the Unit Circle does 
<em>Hint: sin and cos are only opposite signs in Quadrants II and IV</em>


In degrees: t = 120° + 360n and 300° + 360n
BD= 53 units
Good Luck! <3