1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lemur [1.5K]
3 years ago
13

What is the sum of the interior angles of the polygon shown below?

Mathematics
1 answer:
Sedbober [7]3 years ago
5 0

Answer:

30600

Step-by-step explanation:

You might be interested in
Aye someone please help ?
monitta

Answer:

The required rectangular form of the given complex polar form :

z1 = -3√2 - 3√2i

Step-by-step explanation:

z_1=6[\cos (\frac{5\pi}{4}) + i\sin(\frac{5\pi}{4})]...........(1)\\\\Now,\cos (\frac{5\pi}{4})=\cos(\pi+\frac{\pi}{4})\\\\=-\cos(\frac{\pi}{4})\\\\=-\frac{1}{\sqrt{2}}\\\\And,\sin (\frac{5\pi}{4})=\sin(\pi+\frac{\pi}{4})\\\\=-\sin(\frac{\pi}{4})\\\\=-\frac{1}{\sqrt{2}}

On substituting the obtained values in equation (1)

z_1=6[\frac{-1}{\sqrt{2}}-i\cdot \frac{1}{\sqrt{2}}]\\\\\implies z_1=-3\sqrt{2}- 3\sqrt{2}\cdot i

Hence, the required rectangular form of the given complex polar form :

z1 = -3√2 - 3√2i

7 0
3 years ago
2.<br> What is the equation of a hyperbola with a = 8 and c=20
jek_recluse [69]

Answer:

Just Assume that the transverse axis is horizontal

5 0
3 years ago
SOMEONE PLEASE EXPLAIN!!
just olya [345]

To find if something is a parallelogram, they 1 set of line segments need to have the the slope. In this equation, Slope equals x1 + x2 divided by y1 + y2 (Or the other way around, x2 + x1 divided by y2 + y1)

m =  \frac{( - 3 + 1)}{ ( 1 + 3)}  =  \frac{ - 2}{4}  =  -  \frac{1}{2}

For your other point, it could be (-4,5)

If this is confusing, please tell me! I'll try to better explain. It also helps to draw out a graph so you can plot the points.

6 0
3 years ago
Convert the given system of equations to matrix form
yuradex [85]

Answer:

The matrix form of the system of equations is \left[\begin{array}{ccccc}1&1&1&1&-3\\1&-1&-2&1&2\\2&0&1&-1&1\end{array}\right] \left[\begin{array}{c}x&y&w&z&u\end{array}\right] =\left[\begin{array}{c}5&4&3\end{array}\right]

The reduced row echelon form is \left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

The vector form of the general solution for this system is \left[\begin{array}{c}x&y&w&z&u\end{array}\right]=u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

Step-by-step explanation:

  • <em>Convert the given system of equations to matrix form</em>

We have the following system of linear equations:

x+y+w+z-3u=5\\x-y-2w+z+2u=4\\2x+w-z+u=3

To arrange this system in matrix form (Ax = b), we need the coefficient matrix (A), the variable matrix (x), and the constant matrix (b).

so

A= \left[\begin{array}{ccccc}1&1&1&1&-3\\1&-1&-2&1&2\\2&0&1&-1&1\end{array}\right]

x=\left[\begin{array}{c}x&y&w&z&u\end{array}\right]

b=\left[\begin{array}{c}5&4&3\end{array}\right]

  • <em>Use row operations to put the augmented matrix in echelon form.</em>

An augmented matrix for a system of equations is the matrix obtained by appending the columns of b to the right of those of A.

So for our system the augmented matrix is:

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\1&-1&-2&1&2&4\\2&0&1&-1&1&3\end{array}\right]

To transform the augmented matrix to reduced row echelon form we need to follow this row operations:

  • add -1 times the 1st row to the 2nd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&-2&-3&0&5&-1\\2&0&1&-1&1&3\end{array}\right]

  • add -2 times the 1st row to the 3rd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&-2&-3&0&5&-1\\0&-2&-1&-3&7&-7\end{array}\right]

  • multiply the 2nd row by -1/2

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&-2&-1&-3&7&-7\end{array}\right]

  • add 2 times the 2nd row to the 3rd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&0&2&-3&2&-6\end{array}\right]

  • multiply the 3rd row by 1/2

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&0&1&-3/2&1&-3\end{array}\right]

  • add -3/2 times the 3rd row to the 2nd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

  • add -1 times the 3rd row to the 1st row

\left[\begin{array}{ccccc|c}1&1&0&5/2&-4&8\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

  • add -1 times the 2nd row to the 1st row

\left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

  • <em>Find the solutions set and put in vector form.</em>

<u>Interpret the reduced row echelon form:</u>

The reduced row echelon form of the augmented matrix is

\left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

which corresponds to the system:

x+1/4\cdot z=3\\y+9/4\cdot z-4u=5\\w-3/2\cdot z+u=-3

We can solve for <em>z:</em>

<em>z=\frac{2}{3}(u+w+3)</em>

and replace this value into the other two equations

<em>x+1/4 \cdot (\frac{2}{3}(u+w+3))=3\\x=-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}</em>

y+9/4 \cdot (\frac{2}{3}(u+w+3))-4u=5\\y=\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}

No equation of this system has a form zero = nonzero; Therefore, the system is consistent. The system has infinitely many solutions:

<em>x=-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}\\y=\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}\\z=\frac{2u}{3}+\frac{2w}{3}+2</em>

where <em>u</em> and <em>w</em> are free variables.

We put all 5 variables into a column vector, in order, x,y,w,z,u

x=\left[\begin{array}{c}x&y&w&z&u\end{array}\right]=\left[\begin{array}{c}-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}&\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}&w&\frac{2u}{3}+\frac{2w}{3}+2&u\end{array}\right]

Next we break it up into 3 vectors, the one with all u's, the one with all w's and the one with all constants:

\left[\begin{array}{c}-\frac{u}{6}&\frac{5u}{2}&0&\frac{2u}{3}&u\end{array}\right]+\left[\begin{array}{c}-\frac{w}{6}&-\frac{3w}{2}&w&\frac{2w}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

Next we factor <em>u</em> out of the first vector and <em>w</em> out of the second:

u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

The vector form of the general solution is

\left[\begin{array}{c}x&y&w&z&u\end{array}\right]=u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

7 0
4 years ago
What is the value of x?<br> (6x + 109)<br> (x + 179)<br> (4x - 349)
Leya [2.2K]

9514 1404 393

Answer:

  17

Step-by-step explanation:

The two base angles are congruent, so we have ...

  x +17 = 4x -34

  51 = 3x . . . . . . . add 34-x

  17 = x . . . . . . . . .divide by 3

8 0
3 years ago
Other questions:
  • Help ! I don't know how to do this
    6·1 answer
  • Solve for x: 2x^2-2x-24=0
    9·1 answer
  • Suppose that an investment of $13,000 grows in value at a rate of 9% per year. What is the growth factor for this investment?
    12·2 answers
  • For Billy’s birthday party his mother has baked 80 cookies. 40 cookies contain vanilla and 45 contains nuts, and 15 contain both
    13·1 answer
  • The expression (X + 3)(x + 2) is the product of two binomials. Which expression is also a product of binomials?
    6·1 answer
  • Find the value of x that makes f(x)=0
    14·1 answer
  • 3.76+​(y-​1/​2)/​2 need help noww homework
    15·1 answer
  • Which term in the arithmetic sequence 11, 4,-3 . . . is -129?​
    5·1 answer
  • Find the probability that a randomly selected point within the white area r=4
    15·1 answer
  • 6/6 as a sum of fractions
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!