1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
3241004551 [841]
4 years ago
12

Convert the given system of equations to matrix form

Mathematics
1 answer:
yuradex [85]4 years ago
7 0

Answer:

The matrix form of the system of equations is \left[\begin{array}{ccccc}1&1&1&1&-3\\1&-1&-2&1&2\\2&0&1&-1&1\end{array}\right] \left[\begin{array}{c}x&y&w&z&u\end{array}\right] =\left[\begin{array}{c}5&4&3\end{array}\right]

The reduced row echelon form is \left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

The vector form of the general solution for this system is \left[\begin{array}{c}x&y&w&z&u\end{array}\right]=u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

Step-by-step explanation:

  • <em>Convert the given system of equations to matrix form</em>

We have the following system of linear equations:

x+y+w+z-3u=5\\x-y-2w+z+2u=4\\2x+w-z+u=3

To arrange this system in matrix form (Ax = b), we need the coefficient matrix (A), the variable matrix (x), and the constant matrix (b).

so

A= \left[\begin{array}{ccccc}1&1&1&1&-3\\1&-1&-2&1&2\\2&0&1&-1&1\end{array}\right]

x=\left[\begin{array}{c}x&y&w&z&u\end{array}\right]

b=\left[\begin{array}{c}5&4&3\end{array}\right]

  • <em>Use row operations to put the augmented matrix in echelon form.</em>

An augmented matrix for a system of equations is the matrix obtained by appending the columns of b to the right of those of A.

So for our system the augmented matrix is:

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\1&-1&-2&1&2&4\\2&0&1&-1&1&3\end{array}\right]

To transform the augmented matrix to reduced row echelon form we need to follow this row operations:

  • add -1 times the 1st row to the 2nd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&-2&-3&0&5&-1\\2&0&1&-1&1&3\end{array}\right]

  • add -2 times the 1st row to the 3rd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&-2&-3&0&5&-1\\0&-2&-1&-3&7&-7\end{array}\right]

  • multiply the 2nd row by -1/2

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&-2&-1&-3&7&-7\end{array}\right]

  • add 2 times the 2nd row to the 3rd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&0&2&-3&2&-6\end{array}\right]

  • multiply the 3rd row by 1/2

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&0&1&-3/2&1&-3\end{array}\right]

  • add -3/2 times the 3rd row to the 2nd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

  • add -1 times the 3rd row to the 1st row

\left[\begin{array}{ccccc|c}1&1&0&5/2&-4&8\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

  • add -1 times the 2nd row to the 1st row

\left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

  • <em>Find the solutions set and put in vector form.</em>

<u>Interpret the reduced row echelon form:</u>

The reduced row echelon form of the augmented matrix is

\left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

which corresponds to the system:

x+1/4\cdot z=3\\y+9/4\cdot z-4u=5\\w-3/2\cdot z+u=-3

We can solve for <em>z:</em>

<em>z=\frac{2}{3}(u+w+3)</em>

and replace this value into the other two equations

<em>x+1/4 \cdot (\frac{2}{3}(u+w+3))=3\\x=-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}</em>

y+9/4 \cdot (\frac{2}{3}(u+w+3))-4u=5\\y=\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}

No equation of this system has a form zero = nonzero; Therefore, the system is consistent. The system has infinitely many solutions:

<em>x=-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}\\y=\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}\\z=\frac{2u}{3}+\frac{2w}{3}+2</em>

where <em>u</em> and <em>w</em> are free variables.

We put all 5 variables into a column vector, in order, x,y,w,z,u

x=\left[\begin{array}{c}x&y&w&z&u\end{array}\right]=\left[\begin{array}{c}-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}&\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}&w&\frac{2u}{3}+\frac{2w}{3}+2&u\end{array}\right]

Next we break it up into 3 vectors, the one with all u's, the one with all w's and the one with all constants:

\left[\begin{array}{c}-\frac{u}{6}&\frac{5u}{2}&0&\frac{2u}{3}&u\end{array}\right]+\left[\begin{array}{c}-\frac{w}{6}&-\frac{3w}{2}&w&\frac{2w}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

Next we factor <em>u</em> out of the first vector and <em>w</em> out of the second:

u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

The vector form of the general solution is

\left[\begin{array}{c}x&y&w&z&u\end{array}\right]=u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

You might be interested in
Which ordered pairs are solutions to the inequality y−3x&lt;−4?
mars1129 [50]

Answer:

(4,-2)

Step-by-step explanation:

y - 3x < - 4

-2-3(4)   < -4

 -2-12      <-4

 -14        < - 4

8 0
4 years ago
Read 2 more answers
I need help With Math Exponents (click for picture )
Murljashka [212]

Answer

25. 9^3,    729

26. 2^6,    64

27. 1^8,     1

28. 5^4,   625

29. 7^6,   1117,649

5 0
3 years ago
Coach miller is having a cookout at the park for his baseball team. Coach bought 5.15 of ground beef to make burgers. The cost o
horrorfan [7]

(5.15 pound) x (3.40 buck/pound) = <em>17.51 buck</em>


6 0
4 years ago
Read 2 more answers
Formulate but do not solve the following exercise as a linear programming problem. Kane Manufacturing has a division that produc
earnstyle [38]

Answer:

z  - 2*x   -  1.5*y   =  0   maximize

subject to:

3*x  +  5*y   ≤  800

8*x  + 3*y   ≤   1200  

x, y  >  0

Step-by-step explanation:

Formulation:

Kane Manufacturing produce  x  units of model A (fireplace grates)

and  y units of model B

                  quantity   Iron cast lbs    labor (min)   Profit $    

Model  A          x               3                      8                  2

Model  B          y               5                      3                  1.50

We have   800 lbs of iron cast  and 1200 min  of labor available

We need to find out how many units  x  and units y per day to maximiza profit

First constraint   Iron cast lbs     800 lbs

3*x  +  5*y   ≤  800             3*x  +  5*y  +  s₁   =  800

Second constraint  labor    1200 min available

8*x  + 3*y   ≤   1200              8*x  + 3*y           + s₂  =  1200  

Objective function

z  =  2*x  +  1.5*y         to maximize    z  - 2*x   -  1.5*y   =  0  

x > 0   y  >  0

The first table is  ( to apply simplex method )

z         x        y       s₁      s₂       Cte

1        -2       -1.5     0      0          0

0        3         5       1       0        800

0        8         3       0       1       1200

7 0
4 years ago
The linear function g is defined by g(x) = 4x.
pav-90 [236]

Answer:

the answer is D.

Step-by-step explanation:

well, the y-intercept for f(x) is at  

as you can see from the slope-intercept form is at 4, and it has an slope of 2/3.

for g(x), well an y-intercept is when x = 0, what is it from that table?  well, is at 0,3, so when x = 0, y = 3, so no dice on that one.

c)

whenever an x-intercept occurs, y = 0, for f(x) that's at  

what about the x-intercept for g(x)?  well, let's check, when is y = 0?  aha!  at -9, 0, so when y = 0, x = -9, so no dice on that one either.

d)

well, what is the slope of g(x) anyway?  well, let's pick two points off the table to get it hmmm the first two let's use,

and from a), using the slope-intercept form, we know f(x) has a slope of 2/3.

well, 2/3 is larger than 1/3, so no dice.

b)

well, you already know.

5 0
3 years ago
Read 2 more answers
Other questions:
  • I really don’t know this
    7·1 answer
  • Some one please help me with this problem. Thank you. NO answers, just explanation on how to solve it.
    8·1 answer
  • Given m||n, find the value of x.<br> t<br> &gt;m<br> (7x-1)<br> (9x+5)
    13·1 answer
  • 2x-y&lt;5<br><img src="https://tex.z-dn.net/?f=2x%20-%20y%20%5Cleqslant%205" id="TexFormula1" title="2x - y \leqslant 5" alt="2x
    9·1 answer
  • Please help! I don’t know how to make the square roots equal to each other but I understand the other steps... kind of.
    8·1 answer
  • A rectangle is 14 inches long and 6 inches wide. Find its area. A 78 square inches B 20 square inches C 84 square inches D 26 sq
    15·1 answer
  • A town doubles its size every 98 years. If the population is currently 600, what will the population be in 392 years?
    9·1 answer
  • The diagram shows squares 1, 2, and 3 constructed on the sides of a right
    7·1 answer
  • A teacher takes her nephew shopping. She tells her nephew that they can spend x dollars knowing
    6·1 answer
  • Solve for x using the figure to the right​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!