Answer:
c) 50
Step-by-step explanation:
We have been given that the mean life of a particular brand of light bulb is 1200 hours. About 95% of this brand of bulbs will last between 1100 and 1300 hours.
We will use z-score formula to solve our given problem.
, where,
,
,
,

We know that 95% of data points lies within two standard deviation of mean, so 1100 will correspond to a z-score of -2 and 1300 will correspond to a z-score of 2.




We can use sample score 1300 and get same answer as:




Therefore, the standard deviation of the light bulbs’ life is 50 years.
Answer:
Step-by-step explanation:
This is clearly a linear relationship. If Alex rented the movie for 0 days, he'd owe nothing. If he paid $6 for a 3-day rental, the slope of this line would be m = rise / run = $6/(3 days) = $2/day, which is positive.
Then the equation for this graph is C(x) = ($2/day)x, where x is the number of days for which the movie is rented.
Using this formula, we find three particular points on the graph:
(1, $2), (2, $4), (3, ($6)
Table m I believe because each x has one y
Answer:
6 in. per triangle & 24 in total (white squares only)
Step-by-step explanation:
So, one side is 12 inches and each side is made up of one blue and one white. With this you can just divide each side by 2, getting 6. There are 4 sides so,
4 sides X 6 in. per each square= 24
Therefore, she used <u><em>24 in. in total</em></u> and 6 for each triangle.
Hoped this helped!
Answer:
La respuesta esta abajo
Step-by-step explanation:
La pregunta no está completa porque no contiene gráficos, pero te mostraré cómo responderla.
La ecuación de un gráfico de línea recta viene dada por:
y = mx + b; donde y y x son variables, m es la pendiente de la gráfica y b es la intersección en y (que es el valor de y cuando x es 0)
Dado que la ecuación de la gráfica es y = mx, comparando con la ecuación de una línea recta (y = mx + b), podemos concluir que la gráfica con una ecuación y = mx, tiene una pendiente de my una intersección con y de 0.
Esto significa que la gráfica pasa por el origen sin tocar el eje y. Además, la gráfica tiene una pendiente positiva.