This is a problem of conditional probability that can be calculated by the formula:
P(B | A) = P(A ∩ B) / P(A)
We know that:
- between 1 and 50 there are 41 two-digit numbers, therefore
P(A) = 41/50 = 0.82
- between 1 and 50 there are 8 multiples of six, therefore
P(B) = 8/50 = 0.16
- <span>between 1 and 50 there are 7 two-digits mutiples of six, therefore
P(A ∩ B) = 7/50 = 0.14
Now, we can calculate:
</span>P(B | A) = P(A <span>∩ B) / P(A)
= 0.14 / 0.82
= 0.17
Therefore, the probability of getting a multiple of 6 if we draw a two-digit number is 17%.</span>
Answer: 6
Explanation: The EXACT calculation would be 5.9215.. so the closest approximation would be
6, as it's only about .08 -ish away from 6.
Unless you show a picture, its impossible to solve.