Answer:
a) r = 0.974
b) Critical value = 0.602
Step-by-step explanation:
Given - Two separate tests are designed to measure a student's ability to solve problems. Several students are randomly selected to take both test and the results are give below
Test A | 64 48 51 59 60 43 41 42 35 50 45
Test B | 91 68 80 92 91 67 65 67 56 78 71
To find - (a) What is the value of the linear coefficient r ?
(b) Assuming a 0.05 level of significance, what is the critical value ?
Proof -
A)
r = 0.974
B)
Critical Values for the Correlation Coefficient
n alpha = .05 alpha = .01
4 0.95 0.99
5 0.878 0.959
6 0.811 0.917
7 0.754 0.875
8 0.707 0.834
9 0.666 0.798
10 0.632 0.765
11 0.602 0.735
12 0.576 0.708
13 0.553 0.684
14 0.532 0.661
So,
Critical r = 0.602 for n = 11 and alpha = 0.05
If the equation 2(g - h) = b + 4 is solved for g. Then the value of g will be b/2 + h + 2.
<h3>What is the solution of the equation?</h3>
A combination of equations solution is a collection of values x, y, z, etc. that enable all of the calculations to true at the same time.
The equation is given below.
2(g - h) = b + 4
Then solve the equation for the value of g. Then we have
2(g - h) = b + 4
g - h = b/2 + 2
g = h + b/2 + 2
More about the solution of the equation link is given below.
brainly.com/question/545403
#SPJ1
Answer:
0.0082 = 0.82% probability that he will pass
Step-by-step explanation:
For each question, there are only two possible outcomes. Either the students guesses the correct answer, or he guesses the wrong answer. The probability of guessing the correct answer for a question is independent of other questions. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
In this problem we have that:
.
If the student makes knowledgeable guesses, what is the probability that he will pass?
He needs to guess at least 9 answers correctly. So









0.0082 = 0.82% probability that he will pass
I think the answer would be d
It is 7:40am in the morning