1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
34kurt
2 years ago
12

The components of a 15 meters per second velocity at an angle of 60 degrees above the horizontal are?

Physics
1 answer:
mafiozo [28]2 years ago
8 0

Answer:

x-component of velocity: 7.5 m/s

y-component of velocity: 13 m/s

Explanation:

This problem is pure trigonometry. Assuming you know trig, there are only a couple of steps to solving this problem. First, split the velocity into components; recall that any vector not directed along an axis has x and y components. Then, remember that sinΘ = opposite/hypotenuse. Applying this to your scenario, you get sin60° = vy/15. Multiplying this out gives you vy=15sin60. Put this into a calculator (make sure it's set to degree mode because the angle in this problem is in degrees) and you should get 12.99, which you can round up to 13 m/s. This is the velocity in the y-direction.

The procedure to find the x-velocity is very similar, but instead of using sine, we will use the cosine of theta. Recall that cosΘ=adjacent/hypotenuse. Once again plugging this scenario's numbers into that, you end up with cos60 = vₓ/15. Multiplying this out gives you vₓ = 15cos60. Once again, plug this into your calculator. 7.5 m/s should be your answer. This is the velocity in the x-direction.

By the way, a quick way to find the components of a vector, whether it's velocity, force, or whatever else, is to use these functions. Generally, if the vector points somewhere that's not along an axis, you can use this rule. The x-component of the vector is equal to hypotenuse*cosΘ and the y-component of the vector is equal to hypotenuse*sinΘ.

You might be interested in
Interactive Solution 6.39 presents a model for solving this problem. A slingshot fires a pebble from the top of a building at a
mariarad [96]

(a) 29.8 m/s

To solve this problem, we start by analyze the vertical motion first. This is a free fall motion, so we can use the following suvat equation:

v_y^2 - u_y^2 = 2as

where, taking upward as positive direction:

v_y is the final vertical velocity

u_y = 0 is the initial vertical velocity (zero because the pebble is launched horizontally)

a=g=-9.8 m/s^2 is the acceleration of gravity

s = -25.0 m is the displacement

Solving for vy,

v_y = \sqrt{u^2+2as}=\sqrt{0+2(-9.8)(-25)}=-22.1 m/s (downward, so we take the negative solution)

The pebble also have a horizontal component of the velocity, which remains constant during the whole motion, so it is

v_x = 20.0 m/s

So, the final speed of the pebble as it strikes the ground is

v=\sqrt{v_x^2+v_y^2}=\sqrt{20.0^2+(-22.1)^2}=29.8 m/s

(b) 29.8 m/s

In this case, the pebble is launched straight up, so its initial vertical velocity is

u_y = 20.0 m/s

So we can find the final vertical velocity using the same suvat equation as before:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

The horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

(c) 29.8 m/s

This case is similarly to the previous one: the only difference here is that the pebble is launched straight down instead than up, therefore

u_y = -20.0 m/s

Using again the same suvat equation:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(-20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

As before, the horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

We notice that the final value of the speed is always the same in all the three parts, so it does not depend on the direction of launching. This is due to the law of conservation of energy: in fact, the initial mechanical energy of the pebble (kinetic+potential) is the same in all three cases (because the height h does not change, and the speed v does not change either), and the kinetic energy gained during the fall is also the same (since the pebble falls the same distance in all 3 cases), therefore the final speed must also be the same.

7 0
3 years ago
Matter is anything that...
Lisa [10]
The answer is b, anything that has mass and takes up space

8 0
3 years ago
Read 2 more answers
A physical science test book has a mass of 2.2kg. . What is the weight on the earth
dem82 [27]
Weight = mg,          g ≈ 9.8 m/s²

Weight = 2.2 * 9.8 ≈ 21.56 N
8 0
3 years ago
Read 2 more answers
Please help.. urgent Which statement is equivalent to Newton's first law? a. 15,300 N b. 1.20*10^3 N c. 2,030 N d. 1,560 N
taurus [48]
According to Newton laws of motion, 
F = m*a
Here, m = 1,560 Kg
a = 1.30 m/s²

Substitute their values, 
F = 1,560 * 1.30
F = 2028 N ~ 2030 N  [ Closest value ]

In short, Your Answer would be Option C

Hope this helps!
6 0
3 years ago
Couldn’t you technically make infinite speed by putting a car in a vacuum chamber? Since top speed it made by the amount of forc
kakasveta [241]

Answer:

No

Explanation:

For infinite speed to be achevied, one must have no sink of energy to spend. The source of entropy in this example, is the tires hitting the surface, producing heat and friction. Not to mention that you'd still need fuel to start the car, and an infinite tunnel or track, which would be impossible and speed up to process of energy loss through entropy quicker.

7 0
3 years ago
Other questions:
  • A plane flying horizontally at a speed of 50m/s and at an elevation of 160m drops a package, and 2.0 s later it drops a second p
    15·1 answer
  • Which label identifies the statement: "Energy cannot be created or destroyed, but it can be converted or changed into different
    11·1 answer
  • How can we determine the strength of a sonic boom?
    11·1 answer
  • The diagram below shows a light ray from a pencil hitting a mirror.
    5·2 answers
  • A block of mass m= 2.8 kg is attached to a spring of spring constant k= 500 N/m. the block is pulled to an initial position x =
    13·1 answer
  • Suppose you are asked to find the amount of time t, in seconds, it takes for the turntable to reach its final rotational speed.
    10·1 answer
  • Where does crystallization take place?
    13·1 answer
  • Research is being done on the use of radio waves in destroying cancer cells. What type of frequency would be best used in this t
    10·1 answer
  • A ball rolls on a carpet. The ball experiences friction as it rolls. How will friction affect
    7·1 answer
  • Explain why the water that is used to cool the reactor vessel of a nuclear power plant is kept separate from the water that is h
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!