Answer:
Average force, F = 562.5 N
Explanation:
Mass of the golf ball, m = 0.045 kg
Initially, it is at rest, u = 0
Final speed of the ball, v = 25 m/s
The club and the ball are in contact for, 
We need to find the average force acting on the ball. It can be calculated using the formula as :


F = 562.5 N
So, the average force acting on the ball is 562.5 N. Hence, this is the required solution.
I found the Hydrolic system, im not sire if its helpful or not. I could only find that one, sorry if it doesn't help but I hope it does ^-^
Answer:
51.2 J, 86.2 J, 137.4 J
Explanation:
The kinetic energy of the ball is given by:

where
m = 0.40 kg is its mass
v = 16 m/s is its speed
Substituting,

The potential energy of the ball is given by

where
m = 0.40 kg
is the acceleration of gravity
h = 22 m is the heigth of the cliff
Substituting,

Finally, the total mechanical energy is the sum of the kinetic energy and the potential energy:

Answer:
the speed limit 6 seconds and the car will travel in 90m
Answer:
H = Vy t - 1/2 g t^2 height of an object with an initial "vertical" velocity
at t sec after firing
Vy = 78 m/s * sin 40 = .643 * 78 m/s = 50.1 m/s
H = 50.1 * 6 - 1/2 * 9.8 * 6^2 = 300 m - 176 m = 124 m