Answer:
9x -7
Step-by-step explanation:
8x-6+x-1
Combine like terms
8x +x -6-1
9x -7
Answer:
A) x=2, 8
Step-by-step explanation:
abs(x-5)=3
x-5=3, x-5=-3
x=3+5=8,
x=-3+5=2
Answer:
C. -186,205
Step-by-step explanation:
636,854 - 827,155 + 684,862 - 680,766
=> 1,321,716 - 1,507,921
=> -186,205
Answer:
The value is ![P(| \^ p - p| < 0.05 ) = 0.9822](https://tex.z-dn.net/?f=P%28%7C%20%5C%5E%20p%20-%20%20p%7C%20%3C%200.05%20%29%20%3D%200.9822%20)
Step-by-step explanation:
From the question we are told that
The population proportion is ![p = 0.52](https://tex.z-dn.net/?f=p%20%3D%20%200.52)
The sample size is n = 563
Generally the population mean of the sampling distribution is mathematically represented as
![\mu_{x} = p = 0.52](https://tex.z-dn.net/?f=%5Cmu_%7Bx%7D%20%3D%20%20p%20%3D%20%200.52)
Generally the standard deviation of the sampling distribution is mathematically evaluated as
![\sigma = \sqrt{\frac{ p(1- p)}{n} }](https://tex.z-dn.net/?f=%5Csigma%20%20%3D%20%20%5Csqrt%7B%5Cfrac%7B%20p%281-%20p%29%7D%7Bn%7D%20%7D)
=>
=>
Generally the probability that the proportion of persons with a college degree will differ from the population proportion by less than 5% is mathematically represented as
![P(| \^ p - p| < 0.05 ) = P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 ))](https://tex.z-dn.net/?f=P%28%7C%20%5C%5E%20p%20-%20%20p%7C%20%3C%200.05%20%29%20%3D%20%20P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29)
Here
is the sample proportion of persons with a college degree.
So
![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P(\frac{[[0.05 -0.52]]- 0.52}{0.02106} < \frac{[\^p - p] - p}{\sigma } < \frac{[[0.05 -0.52]] + 0.52}{0.02106} )](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%28%5Cfrac%7B%5B%5B0.05%20-0.52%5D%5D-%200.52%7D%7B0.02106%7D%20%3C%20%5Cfrac%7B%5B%5C%5Ep%20-%20p%5D%20-%20p%7D%7B%5Csigma%20%7D%20%20%3C%20%5Cfrac%7B%5B%5B0.05%20-0.52%5D%5D%20%2B%200.52%7D%7B0.02106%7D%20%29)
Here
![\frac{[\^p - p] - p}{\sigma } = Z (The\ standardized \ value \ of\ (\^ p - p))](https://tex.z-dn.net/?f=%5Cfrac%7B%5B%5C%5Ep%20-%20p%5D%20-%20p%7D%7B%5Csigma%20%7D%20%20%3D%20Z%20%28The%5C%20standardized%20%5C%20%20value%20%5C%20%20of%5C%20%20%28%5C%5E%20p%20-%20p%29%29)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[\frac{-0.47 - 0.52}{0.02106 } < Z < \frac{-0.47 + 0.52}{0.02106 }]](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%5B%5Cfrac%7B-0.47%20-%200.52%7D%7B0.02106%20%7D%20%20%3C%20%20Z%20%20%3C%20%5Cfrac%7B-0.47%20%2B%200.52%7D%7B0.02106%20%7D%5D)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[ -2.37 < Z < 2.37 ]](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%5B%20-2.37%20%3C%20%20Z%20%20%3C%202.37%20%5D)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P(Z < 2.37 ) - P(Z < -2.37 )](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%28Z%20%3C%20%202.37%20%29%20-%20P%28Z%20%3C%20-2.37%20%29)
From the z-table the probability of (Z < 2.37 ) and (Z < -2.37 ) is
![P(Z < 2.37 ) = 0.9911](https://tex.z-dn.net/?f=P%28Z%20%3C%20%202.37%20%29%20%3D%200.9911)
and
![P(Z < - 2.37 ) = 0.0089](https://tex.z-dn.net/?f=P%28Z%20%3C%20%20-%202.37%20%29%20%3D%200.0089)
So
=>
=>
=> ![P(| \^ p - p| < 0.05 ) = 0.9822](https://tex.z-dn.net/?f=P%28%7C%20%5C%5E%20p%20-%20%20p%7C%20%3C%200.05%20%29%20%3D%200.9822%20)
#1. B
<span>(z * z^2 + z * 2z + z * 4) – (-2 *z^2 – (-2) 2z – (-2) 4)
Z^3 + 2z^2 + 4z – 2z^2 -4z – 8
Z^3 + 2z^2 – 2z^2 + 4z – 4z – 8
Z^3 - 8
</span>
#2 and #3. D
<span>(x + y)(x + 2)
x^2 + 2x + yx + 2y
</span>
#4. D.
<span>(x - 7)(x + 7)(x- 2)
x^2 + 7x – 7x -49
x^2 + x – 49
x^2 -49
(x^2 – 49 ) (x – 2)
x^3 – 2x^2 – 49x + 98
</span>
#5. C
(y - 4) = 0
y = 4
(x + 3)= 0
x = -3
#6. A and B