Since the standard deviation is the square root of variance. The only times where the standard deviation is greater than the variance is when the variance is between the values 0 and 1 exclusively. For example, the square root of 0.25 is 0.5.
Subtract 32 to both sides to the equation becomes -5x^2 + 7x + 9 = 0.
To solve this equation, we can use the quadratic formula. The quadratic formula solves equations of the form ax^2 + bx + c = 0
x = [ -b ± √(b^2 - 4ac) ] / (2a)
x = [ -7 ± √(7^2 - 4(-5)(9)) ] / ( 2(-5) )
x = [ -7 ± √(49 - (-180) ) ] / ( -10 )
x = [ -7 ± √(229) ] / ( -10)
x = [ -7 ± sqrt(229) ] / ( -10 )
x = 7/10 ± -sqrt(229)/10
The answers are 7/10 + sqrt(229)/10 and 7/10 - sqrt(229)/10.
Answer:
tha answer is leter C thanks po
Step-by-step explanation:
thanks you po ??