The answer to this question is the second choice
hope this helps:)
Using I=PRT/100
replacing the given information;
(p+prt)=P×r×t
⇒p+prt=P×rt
P=(p+prt)/(rt)
Principal(P)= (p/rt)+p
=p((1/rt)+1)
Consider expanding the right hand side as
![y=\sqrt[3]{\dfrac{x(x-2)}{x^2+1}}=x^{1/3}(x-2)^{1/3}(x^2+1)^{-1/3}](https://tex.z-dn.net/?f=y%3D%5Csqrt%5B3%5D%7B%5Cdfrac%7Bx%28x-2%29%7D%7Bx%5E2%2B1%7D%7D%3Dx%5E%7B1%2F3%7D%28x-2%29%5E%7B1%2F3%7D%28x%5E2%2B1%29%5E%7B-1%2F3%7D)
Then taking the logarithm of both sides and applying some properties of the logarithm, you have

Now differentiate both sides with respect to
:


![\dfrac{\mathrm dy}{\mathrm dx}=\dfrac23\dfrac{x^2+x-1}{x(x-2)(x^2+1)}\sqrt[3]{\dfrac{x(x-2)}{x^2+1}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D%5Cdfrac23%5Cdfrac%7Bx%5E2%2Bx-1%7D%7Bx%28x-2%29%28x%5E2%2B1%29%7D%5Csqrt%5B3%5D%7B%5Cdfrac%7Bx%28x-2%29%7D%7Bx%5E2%2B1%7D%7D)
Answer:
that he lines are not going strait
Step-by-step explanation: