Find the median of each set:-
Median is middle number of a data set. If a data set has an odd number of numbers then the median is the middle number when ordered form least to greatest but if its an even number you have to find the mean for the middle 2 numbers when ordered for least to greatest.
A.
1.2, 2.4, 3.2, 3.2, 3.6, 4.0, 4.1, 4.7
Even numbers = 8
3.2 + 3.6 = 6.8
6.8 ÷ 2 =
Median = 3.4
So this shows that A isn't the answer because the median of A is 3.4, not 3.2.
B.
1.6, 2.8, 2.9, 3.1, 3.3, 3.6, 4.2, 4.5
Even numbers = 8
3.1 + 3.3 = 6.4
6.4 ÷ 2 = 3.2
Median = 3.2
<span>So this shows that B is the answer because the median of B is 3.2.
C.
1.8, 2.0, 2.0, 2.2, 3.2, 4.7, 4.8, 4.9
</span>
Even numbers = 8
2.2 + 3.2 = 5.4
5.4 ÷ 2 = 2.7
Median = 2.7
<span>So this shows that C isn't the answer because the median of C is 2.7, not 3.2.
</span>
D.
1.4, 1.7, 2.9, 3.0, 3.1, 3.2, 3.2, 3.2, 4
Odd numbers = 9
Median = 3.1
<span>So this shows that D isn't the answer because the median of D is 3.1, not 3.2.
</span>
The stem and leaf plot which median is 3.2 is B.
Answer:
12p x (15 x 25) I might not be correct :')
Assign variables to you unknowns.
c = $ cars
t = $ trucks
6c + 3t = 4800
8c + t = 4600
use substitution or elimination to solve the system of equations.
using elimination.. multiply second equation by -3 and add to the other to combine equations into one.
6c + 3t = 4800
-3(8c + t = 4600)
---------------------------
-18c + 0 = -9000
c = 9000/18
c = 500 $
use this in one of the equations to find the cost of a truck.
8(500) + t = 4600
4000 + t = 4600
t = 4600 - 4000
t = 600 $
question asks
2(500) + 3(600) =
1000 + 1800 = 2800 $
There are a couple of ways to tackle this one, using the 45-45-90 rule or just using the pythagorean theore, let's use the pythagorean theorem.
the angle at A is 45°, and its opposite side is BC, the angle at C is 45° as well, and its opposite side is AB, well, the angles are the same, thus BC = AB.
hmmm le'ts call hmmm ohh hmmm say z, thus BC = AB = z.
If you mean 9% of 153 your answer is 13.77