<u>Answer:</u> The value of equilibrium constant for the net reaction is 11.37
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u> ![A+2B\xrightarrow[]{K_1} 2C](https://tex.z-dn.net/?f=A%2B2B%5Cxrightarrow%5B%5D%7BK_1%7D%202C)
<u>Equation 2:</u> ![2C\xrightarrow[]{K_2} D](https://tex.z-dn.net/?f=2C%5Cxrightarrow%5B%5D%7BK_2%7D%20D)
The net equation follows:
![D\xrightarrow[]{K} A+2B](https://tex.z-dn.net/?f=D%5Cxrightarrow%5B%5D%7BK%7D%20A%2B2B)
As, the net reaction is the result of the addition of first equation and the reverse of second equation. So, the equilibrium constant for the net reaction will be the multiplication of first equilibrium constant and the inverse of second equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:


Putting values in above equation, we get:

Hence, the value of equilibrium constant for the net reaction is 11.37
Answer:
oxygen
Explanation:
pls mark me brainliest right
Answer:
Molar concentration of CO₂ in equilibrium is 0.17996M
Explanation:
Based on the reaction:
NiO(s) + CO(g) ⇆ Ni(s) + CO₂(g)
kc is defined as:
kc = [CO₂] / [CO] = 4.0x10³ <em>(1)</em>
As initial concentration of CO is 0.18M, the concentrations in equilibrium are:
[CO] = 0.18000M - x
[CO₂] = x
Replacing in (1):
4.0x10³ = x / (0.18000-x)
720 - 4000x = x
720 = 4001x
x = 0.17996
Thus, concentrations in equilibrium are:
[CO] = 0.18000M - 0.17996 = 4.0x10⁻⁵
[CO₂] = x = <em>0.17996M</em>
<em></em>
Thus, <em>molar concentration of CO₂ in equilibrium is 0.17996M</em>
<em />
I hope it helps!
A) 15.9 mL I hope it is if not I’m sorry