Answer:
The strongest force that exists between molecules of Ammonia is <em>Hydrogen Bonding</em>.
Explanation:
Hydrogen Bond Interactions are those interactions which are formed between a partial positive hydrogen atom bonded directly to most electronegative atoms (i.e. F, O and N) of one molecule interacts with the partial negative most electronegative atom of another molecule.
Hence, in ammonia the nitrogen atom being more electronegative element than Hydrogen will be having partial negative charge and making the hydrogen atom partial positive. Therefore, the attraction between these partials charges will be the main force of interaction between ammonia molecules.
Other than Hydrogen bonding interactions ammonia will also experience dipole-dipole attraction and London dispersion forces.
Freezing, condensation, Deposition.
iodine which should appear before tellurium and argon which should appear after potassium
There is a 3rd one: nickel should appear before cobalt
A protective layer composed of overlapping cells, like fish scales or roof tiles, but facing downwards. The outer cuticle holds your hair in your hair follicle by means of a Velcro-like bond. It also minimizes the movement of water (moisture) in and out of the underlying cortex.
An Exothermic reaction releases energy into the surroundings and so the products have more potential energy then the reactants. The enthalpy change is a negative value. Whereas, an endothermic reaction involves the absorption of energy into the system and so the reactants have more potential energy than the products. The enthalpy change is a positive value. This is clearly represented in energy profile diagrams.