Answer:
Chemical equation:
HNO₃ + Al(OH)₃ → Al(NO₃)₃ + H₂O
Explanation:
Chemical equation:
HNO₃ + Al(OH)₃ → Al(NO₃)₃ + H₂O
Balanced chemical equation:
3HNO₃ + Al(OH)₃ → Al(NO₃)₃ + 3H₂O
Ionic equation:
3H⁺ + 3NO⁻₃(aq) + Al(OH)₃(s) → Al³⁺(aq) + 3NO₃⁻¹(aq) + 3H₂O(l)
Net ionic equation:
Al(OH)₃(s) + 3H⁺(aq) → Al³⁺(aq) + 3H₂O(l)
The NO⁻₃ are spectator ions that's why these are not written in net ionic equation. The water can not be splitted into ions because it is present in liquid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation.
A redox reaction be used as a source of electrical energy only when two half-reactions are physically separated. <span>The electrons that are released at the anode flow through the wire, producing an electric current. Galvanic cells therefore transform chemical energy into electrical energy that can then be used to do work.</span>
Answer:
Lead (II) iodide
Explanation:
The reaction of lead (II) nitrate, Pb(NO₃)₂ with KI is:
Pb(NO₃)₂(aq) + 2KI(aq) → KNO₃(aq) + PbI₂(s)
This is a typical double-replacement reaction where anions and cations exchange its couple.
All nitrates are solubles, thus, KNO₃ is not the precipitate.
The only possibility of precipitate is PbI₂,
Lead (II) iodide, a yellow and insoluble solid...
A pond of cement is more dense