Answer:

*Note c could be written as a/b
Step-by-step explanation:
-sin(-t - 8 π) + cos(-t - 2 π) + tan(-t - 5 π)
The identities I'm about to apply:



Let's apply the difference identities to all three terms:
![-[\sin(-t)\cos(8\pi)+\cos(-t)\sin(8\pi)]+[\cos(-t)\cos(2\pi)+\sin(-t)\sin(2\pi)]+\frac{\tan(-t)-\tan(5\pi)}{1+\tan(-t)\tan(5\pi)}](https://tex.z-dn.net/?f=-%5B%5Csin%28-t%29%5Ccos%288%5Cpi%29%2B%5Ccos%28-t%29%5Csin%288%5Cpi%29%5D%2B%5B%5Ccos%28-t%29%5Ccos%282%5Cpi%29%2B%5Csin%28-t%29%5Csin%282%5Cpi%29%5D%2B%5Cfrac%7B%5Ctan%28-t%29-%5Ctan%285%5Cpi%29%7D%7B1%2B%5Ctan%28-t%29%5Ctan%285%5Cpi%29%7D)
We are about to use that cos(even*pi) is 1 and sin(even*pi) is 0 so tan(odd*pi)=0:
![-[\sin(-t)(1)+\cos(-t)(0)]+[\cos(-t)(1)+\sin(-t)(0)]+\frac{\tan(-t)-0}{1+\tan(-t)(0)](https://tex.z-dn.net/?f=-%5B%5Csin%28-t%29%281%29%2B%5Ccos%28-t%29%280%29%5D%2B%5B%5Ccos%28-t%29%281%29%2B%5Csin%28-t%29%280%29%5D%2B%5Cfrac%7B%5Ctan%28-t%29-0%7D%7B1%2B%5Ctan%28-t%29%280%29)
Cleaning up the algebra:
![-[\sin(-t)]+[\cos(-t)]+\frac{\tan(-t)}{1}](https://tex.z-dn.net/?f=-%5B%5Csin%28-t%29%5D%2B%5B%5Ccos%28-t%29%5D%2B%5Cfrac%7B%5Ctan%28-t%29%7D%7B1%7D)
Cleaning up more algebra:

Applying that sine and tangent is odd while cosine is even. That is,
sin(-x)=-sin(x) and tan(-x)=-tan(x) while cos(-x)=cos(x):

Making the substitution the problem wanted us to:

Just for fun you could have wrote c as a/b too since tangent=sine/cosine.
Answer:
First, see what is the temperature is on the first day before it dropped now on the fifth day see how much it drop from the first day to the last day hope this helped.
Step-by-step explanation:
The digit 6 is in the Hundred Thousand Place.
Answer:
4a
Step-by-step explanation:
-8 / -2 = 4
a^8/a^7 = a^(8 - 7) = a
Answer: 4a