Answer:
The correct answer is 30%
Answer:
19
Step-by-step explanation:
im smart
Answer:

Step-by-step explanation:
I will work with radians.
![$\frac {\cos^2 \left(\frac{\pi}{2}-x \right)+\sin(-x)-\sin^2 \left(\frac{\pi}{2}-x \right)+\cos \left(\frac{\pi}{2}-x \right)} {[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)]}$](https://tex.z-dn.net/?f=%24%5Cfrac%20%7B%5Ccos%5E2%20%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x%20%5Cright%29%2B%5Csin%28-x%29-%5Csin%5E2%20%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x%20%5Cright%29%2B%5Ccos%20%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x%20%5Cright%29%7D%20%7B%5B%5Csin%28%5Cpi%20-x%29%2B%5Ccos%28-x%29%5D%20%5Ccdot%20%5B%5Csin%282%5Cpi%20%2Bx%29%5Ccos%282%5Cpi-x%29%5D%7D%24)
First, I will deal with the numerator

Consider the following trigonometric identities:




Therefore, the numerator will be

Once



Now let's deal with the numerator
![[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)]](https://tex.z-dn.net/?f=%5B%5Csin%28%5Cpi%20-x%29%2B%5Ccos%28-x%29%5D%20%5Ccdot%20%5B%5Csin%282%5Cpi%20%2Bx%29%5Ccos%282%5Cpi-x%29%5D)
Using the sum and difference identities:





Therefore,
![[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)] \implies [\sin(x)+\cos(x)] \cdot [\sin(x)\cos(x)]](https://tex.z-dn.net/?f=%5B%5Csin%28%5Cpi%20-x%29%2B%5Ccos%28-x%29%5D%20%5Ccdot%20%5B%5Csin%282%5Cpi%20%2Bx%29%5Ccos%282%5Cpi-x%29%5D%20%5Cimplies%20%5B%5Csin%28x%29%2B%5Ccos%28x%29%5D%20%5Ccdot%20%5B%5Csin%28x%29%5Ccos%28x%29%5D)
![\implies [p+4] \cdot [p \cdot 4]=4p^2+16p](https://tex.z-dn.net/?f=%5Cimplies%20%5Bp%2B4%5D%20%5Ccdot%20%5Bp%20%5Ccdot%204%5D%3D4p%5E2%2B16p)
The final expression will be

Answer:
rectangle A:
LENGTH:9
WİDTH:6
rectangle B:
LENGTH:9
WİDTH:3
Step-by-step explanation:
if you want to find the length of a square you should know that in a square all 4 sides lengths are the same so the are is give as 36 to find 1 side of the length we have to divide 36 with 4(because there are 4 sides)
which means the lengths of each side is 9.
it is the same as in rectangle a and b length hasn't changed only the width has changed.
we can also find the width with the information given us about its ratio.
it says that The ratio of area A to area B is 2:1
the length is 9:
we can make it simple like this lets say 2x and 1x has to give us 9
so we can say 3x=9,x=3
to find the width we can say that 2x width is for rectangle A and 1 x is rectangle B. so x was 3:
2x=6
1x=3
these are the widths of rectangle A and B