True
It's in free fall( 9.8 m/s), 2 seconds have passed.
Answer:If a wave y(x, t) = (6.0 mm) sin(kx + (600 rad/s)t + Φ) travels along a string, how much time does any given point on the string take to move between displacements y = +2.0 mm and y = -2.0 mm?
Explanation:
Answer:
after it has hit the ground
Answer:
speed = 3.95 m/s
Explanation:
area = π x radius^2
area = π x (2.67 x 10^-3)^2
volume flow rate = area x speed
volume / time = area x speed
density = mass / volume
volume = mass / density
<u>mass / (density x time) = area *speed</u>
mass flow rate = mass / time
<u>mass flow rate / density = area x speed</u>
6.55 x 10^-2 / 740 = pi * (2.67 x 10^-3)^2 * speed
speed =8.8514 x 10-5 /2.2396 x 10-5 m/s
speed = 3.95 m/s
Answer:
Assuming that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic interaction (i.e., ignore pure Coulomb forces) between the charge and the bar magnet, the magnet will not experience any torque at all - option A
Explanation:
Assuming that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic interaction (i.e., ignore pure Coulomb forces) between the charge and the bar magnet, the magnet will not experience any torque at all; the reason being that: no magnetic field is being produced by a charge that is static. Only a moving charge can produce a magnetic effect. And the magnet can not have any torque due to its own magnetic lines of force.